next_inactive up previous



Types de données algébriques en MGS

Olivier MICHEL

LaMI1,  Équipe SPÉCIF,  UMR 8042 CNRS,  Université d'Évry val d'Essonne,  GENOPOLE
Tour Evry-2, 523 Place des terrasses de l'agora, 91000 Évry Cedex

7 janvier 2005





Mots-clés : types de données algébriques, modèles déclaratifs de calcul, langage de programmation, sémantique.
Public visé : DEA Informatique, stage ENS, stage IIE, TER de maîtrise, stage Polytechnique.

Contexte de l'étude

Le projet MGS développe un langage de programmation original dédié à la modélisation et la simulation de systèmes dynamiques complexes (en particulier en biologie). MGS permet la représentation d'organisations sophistiquées entre des entités variables et hétérogènes, ainsi que leur transformation par des règles locales (interactions). Ces travaux se fondent sur des notions de topologie alégbrique et permettent des modèles de calculs variés comme les L-systèmes, le calcul chimique ou bien les automates cellulaires.

La structure de données fondamentale en MGS est la collection topologique. Une collection topologique est un ensemble d'éléments organisés par une relation de voisinage. Une transformation permet de spécifier de nouvelles fonctions sur les collections par des cas filtrant des sous-collections. Ces notions permettent d'unifier dans le même cadre formel les différents modèles de calculs cités plus haut. Pour chacun des modèles il suffit de choisir le bon voisinage pour la collection utilisée.

Un point remarquable est l'existence d'un langage de filtres, utilisé pour écrire les règles d'une transformation, qui est commun à tous les types de collection. Ce langage de filtres se fonde sur la notion de voisinage.

Sujet du stage

Actuellement, les collections topologiques disponibles dans MGS sont : la séquence, l'ensemble et le multi-ensemble, les structures de données régulières (les tableaux à $n$-dimensions), les graphes (à voisinage quelconque et de Voronoï). Les types de données algébriques (TDA) ne sont qu'un sous-cas des graphes (ce sont des arbres) avec la particularité supplémentaire d'avoir une décoration à chaque sommet qui détermine le nombre de sous-arbres pour ce sommet. Le travail consiste en l'intégration des TDA dans MGS, avec toutes les opérations classiques de filtrage du langage.

À propos de ce document...

This document was generated using the LaTeX2HTML translator Version 2K.1beta (1.48)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The command line arguments were:
latex2html -split 0 -local_icons sujet.tex

The translation was initiated by Olivier Michel on 2005-01-07


Notes

... LaMI1
+1Contacts : par courier électronique : michel$\:$@ReMoVeMeFIRST.lami.univ-evry.fr. Des informations supplémentaires sont disponibles à partir de la page :  http://mgs.lami.univ-evry.fr

next_inactive up previous
Olivier Michel 2005-01-07