
LaMI
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Août 2004
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The Analytical Engine weaves algebraic
patterns just as the Jacquard loom weaves
flowers and leaves.

Ada Lovelace

1 Goals and Motivations

The emergence of terms like natural computing, mimetic computing, parallel problem solving from nature,
bio-inspired computing, neurocomputing, evolutionary computing, etc., shows the never ending interest
of the computer scientists for the use of “natural phenomena” as “problem solving devices” or more
generally, as a fruitful source of inspiration to develop new programming paradigms. It is the latter
topic which interests us here. The idea of numerical experiment can be reversed and, instead of using
computers to simulate a fragment of the real world, the idea is to use (a digital simulation of) the real
world to compute. In this perspective, the processes that take place in the real world are the objects of
a new calculus:

description of the world’s laws = program
state of the world = data of the program

parameters of the description = inputs of the program
simulation = the computation

This approach can be summarized by the following slogan: “programming in the language of nature”
and was present since the very beginning of computer science with names like W. Pitts and W. S.
McCulloch (formal neurons, 1943), S. C. Kleene (inspired by the previous for the notion of finite state
automata, 1951), J. H. Holland (connectionist model, 1956), J. Von Neumann (cellular automata, 1958),
F. Rosenblatt (the perceptron, 1958), etc.

This approach offers many advantages from the teaching, heuristic and technical points of view: it is
easier to explain concepts referring to real world processes that are actual examples; the analogy with
the nature acts as a powerful source of inspirations; and the studies of natural phenomena by the various
scientific disciplines (physics, biology, chemistry...) have elaborated a large body of concepts and tools
that can be used to study computations (some concrete examples of this cross fertilization based on the
concept of dynamical system are given in references [6, 8, 7, 49, 17]).

There is a possible fallacy in this perspective: the description of the nature is not unique and diverse
concurent approaches have been developed to account for the same objects (e.g. the two examples given
in Figure 3). Therefore, there is not a unique “language of nature” prescribing a unique and definitive
programming paradigm. However, there is a common concern shared by the various descriptions of nature
provided by the scientific disciplines: natural phenomena take place in time and space1.

∗LaMI umr 8042 CNRS – Université d’Évry, Tour Évry-2, 523 place des terrasses de l’agora, 91000 Évry, France.
Emails: [michel, giavitto, jcohen, aspicher]@lami.univ-evry.fr

1We cannot refrain us to cite Kant’s famous sentences on the ontological preeminence of the intuition of space over all
other object perceptions [34, Transcendental Aesthetic, sect. 1, A.24, B.39]: Space is a necessary a priori representation,
which underlies all outer intuitions. We can never represent to ourselves the absence of space, though we can quite well
think it as empty of objects. It must therefore be regarded as the condition of the possibility of appearances, and not as a
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In this paper, we propose the use of spatial notions as structuring relationships in a programming
language. Considering space in a computation is hardly new: the use of spatial (and temporal) notions
is at the basis of computational complexity of a program; spatial and temporal relationships are also
used in the implementation of parallel languages (if two computations occur at the same time, then
the two computations must be located at two different places, which is the basic constraint that drives
the scheduling and the data distribution problems in parallel programming); the methods for building
domains in denotational semantics have also clearly topological roots, but they involve the topology of
the set of values, not the topology of a value. In summary, spatial notions have been so far mainly used
to describe the running of a program and not as means to develop new programs.

We want to stress this last point of view: we are not concerned by the organization of the resources
used by a program run. What we want is to develop a spatial point of view on the entities built by the
programmer when he designs his programs. From this perspective, a program must be seen as a space
where computation occurs and a computation can be structured by spatial relationships. We hope to
provide some evidences in the rest of this paper that the concept of space can be as fertile as mathematical
logic for the development of programming languages. More specifically, we advocate that the concepts
and tools developed for the algebraic construction and characterization of shapes2 provide interesting
teaching, heuristic and technical alternatives to develop new data structures and new control structures
for programming.

The rest of this paper is organized as follows. Section 2 and section 3 provide an informal discussion
to convince the reader of the interest of introducing a topological point of view in programming. The
other sections are more technical and focus on the experimental programming language MGS used as a
vehicle to investigate and validate the topological approach.

Section 2 introduces the idea of seeing a data structure as a space where the computation and the
values move. Section 3 follows the spatial metaphor and presents control structures as path specifications.
The previous ideas underlie MGS. Section 4 sketches this language. The presentation is restricted to the
notions needed to follow the examples in the next sections. Section 5.1 and section 5.2 give some examples
in the field of dynamical system simulation. We introduce the (DS)2 class of dynamical systems which
exhibit a dynamical structure. Such a kind of systems are hard to model and simulate because the
state space must be computed jointly with the running state of the system. It appears that the notions
developed for the simulation of dynamical systems with a dynamical structure enable a new programming
style and section 6 gives some examples of the expressive use of MGS to specify, in a very concise manner,
some fundamental algorithms in various areas of computer science. The previous examples illustrate the
use of spatial notions in the “programming in the small” task [13]. To conclude in section 7 we indicate
some of the related work and we mention briefly some perspectives on the use of spatial notions to support
“programming in the large”.

2 Data Structures as Spaces3

The relative accessibility from one element to another is a key point considered in a data structure
definition:

• In a simply linked list, the elements are accessed linearly (the second after the first, the third after
the second, etc.).

• In a circular buffer, or in a double-linked list, the computation goes from one element to the following
or to the previous one.

determination dependent upon them. It is an a priori representation, which necessarily underlies outer appearances. This
statement justifies in some way the current trend towards the geometrization of physics since the end of the nineteenth
century [35].

2G. Gaston-Granger in [29] considers three avenues in the formalization of the concept of space: shape (the algebraic
construction and the transformation of space and spatial configurations), texture (the continuum) and measure (the process
of counting and coordinatization [56]). In this work, we rely on elementary concepts developed in the field of combinatorial
algebraic topology for the construction of spaces [30].

3The ideas exposed in this section are developed in [24, 19].
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• From a node in a tree, we can access the sons.

• The neighbors of a vertex V in a graph are visited after V when traveling through the graph.

• In a record, the various fields are locally related and this localization can be named by an identifier.

• Neighborhood relationships between array elements are left implicit in the array data-structure.
Implementing neighborhood on arrays relies on an index algebra: index computations are used to
code the access to a neighbor. The standard example of index algebra is integer tuples with linear
mappings λx.x± 1 along each dimension (called “Von Neumann” or “Moore” neighborhoods).

This accessibility relation defines a logical neighborhood. The concept of logical neighborhood in a data
structure is not only an abstraction perceived by the programmer and vanishing at the execution, but
it does have an actual meaning for the computation. Very often the computation indeed complies with
the logical neighborhood of the data elements and it is folk’s knowledge that most of the algorithms are
structured either following the structure of the input data or the structure of the output data. Let us
give some examples.

In section 6.2 we present two sorting algorithms. The first one is a variation of the well known bubble-
sort. In this sorting procedure, two adjacent elements (neighbors!) are exchanged if some condition is
met. In the second one, tokens move vertically in the columns of an array.

The recursive definition of the fold function on lists propagates an action to be performed along
the traversal of a list. More generally, recursive computations on data structures respect so often the
logical neighborhood, that standard high-order functions (e.g. primitive recursion) can be automatically
defined from the data structure organization (think about catamorphisms and other polytypic functions
on inductive types [40, 33]).

The list of examples can be continued to convince ourselves that a notion of logical neighborhood is
fundamental in the definition of a data structure. So to define a data organization, we adopt a topological
point of view: a data structure can be seen as a space, the set of positions between which the computation
moves. Each position possibly holds a value4. The set of positions is called the container and the values
labeling the positions constitute the content.

This topological approach is constructive: one can define a data type by the set of moves allowed in
the data structure. An example is given by the notion of “Group Based Fields” or GBF in short [26, 21].
In a uniform data structure, i.e. in a data structure where any elementary move can be used against
any position, the set of moves possesses the structure of a mathematical group G. The neighborhood
relationship of the container corresponds to the Cayley graph of G. In this paper, we will use only two
very simple groups G corresponding to the moves |north> and |east> allowed in a two-dimensional grid
Grid2 and to the moves |a>, |b>, and |c> allowed in the hexagonal lattice Hexa figured at the right of
Fig. 4.

3 Control Structures as Paths

In the previous section, we suggested looking at data structure as spaces in which computation moves.
Then, when the computation proceeds, a path in the data structure is traversed. This path is driven
by the control structures of the program. So, a control structure can be seen as a path specification in
the space of a data structure. We elaborate on this idea into two directions: concurrent processes and
multi-agent systems.

3.1 Homotopy of a Program Run

Consider two sequential processes A and B that share a semaphore s. The current state of the parallel
execution P = A || B can be figured as a point in the plane A × B where A (resp. B) is the sequence of
instructions of A (resp. B). Thus, the running of P corresponds to a path in the plane A× B. However,

4A point in space is a placeholder awaiting for an argument, L. Wittgenstein, (Tractatus Logico Philosophicus, 2.0131).
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there are two constraints on paths that represent the execution of P. Such a path must be “increasing”
because we suppose that at least one of the two subprocesses A or B must progress. The second constraint
is that the two subprocesses cannot be simultaneously in the region protected by the semaphore s. This
constraint has a clear geometrical interpretation: the increasing paths must avoid an “obstruction region”,
see Fig. 1. Such representation is known at least from the 1970’s as “progress graph” [9] and is used to
study the possible deadlocks of a set of concurrent processes.

Homotopy (the continuous deformation of a path) can be adapted to take into account the constraint
of increasing paths and provides effective tools to detect deadlocks or to classify the behavior of a parallel
program (for instance in the previous example, there are two classes of paths corresponding to executions
where the process A or B enters the semaphore first). Refer to [28] for an introduction to this domain.
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Figure 1: Left: The possible path taken by the process A || B is constrained by the obstruction resulting
of a semaphore shared between the processes A and B. Right: The sharing of two semaphores between
two processes may lead to deadlock (corresponding to the domain α) or to the existence of a “garden of
Eden” (the domain β that cannot be accessed outside from β and that can only be leaved.)

3.2 The Topological Structure of Interactions5

In a multi-agent system (or an object based or an actor system), the control structures are less explicit
and the emphasis is put on the local interaction between two (sometimes more) agents. In this section,
we want to show that the interactions between the elements of a system exhibit a natural topology.

The starting point is the decomposition of a system into subsystems defined by the requirement that
the elements into the subsystems interact together and are truly independent from all other subsystems
parallel evolution.

In this view, the decomposition of a system S into the subsystems S1, S2, . . . , Sn is functional : the
state si(t+1) of the subsystem Si depends solely of the previous state si(t). However, the decomposition
of S into the Si can depend on the time steps. So we write St

1, S
t
2, . . . , S

t
nt

for the decomposition of the
system S at time t and we have: si(t + 1) = ht

i(si(t)) where the ht
i are the “local” evolution functions of

the St
i . The “global” state s(t) of the system S can be recovered from the “local” states of the subsystems:

there is a function ϕt such that s(t) = ϕt(s1(t), . . . , snt(t)) which induces a relation between the “global”
evolution function h and the local evolution functions: s(t+1) = h(s(t)) = ϕt(ht

1(s1(t)), . . . , ht
nt

(snt(t))).
The successive decomposition St

1, S
t
2, . . . , S

t
nt

can be used to capture the elementary parts and the
interaction structure between these elementary parts of S. Cf. Figure 2. Two subsystems S′ and S′′ of
S interact if there are some St

j such that S′, S′′ ∈ St
j . Two subsystems S′ and S′′ are separable if there

are some St
j such that S′ ∈ St

j and S′′ 6∈ St
j or vice-versa. This leads to consider the set S, called the

interaction structure of S, defined by the smaller set closed by intersection that contains the St
j .

The set S has a topological structure: S corresponds to an abstract simplicial complex. An abstract
simplicial complex [30] is a collection S of finite non-empty set such that if A is an element of S, so is
every nonempty subset of A. The element A of S is called a simplex of S; its dimension is one less that
the number of its elements. The dimension of S is the largest dimension of one of its simplices. Each

5This section is adapted from [51].
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nonempty subset of A is called a face and the vertex set V (S), defined by the union of the one point
elements of S, corresponds to the elementary functional parts of the system S. The abstract simplicial
complex notion generalizes the idea of graph: a simplex of dimension 1 is an edge that links two vertices,
a simplex f of dimension 2 can be thought of as a surface whose boundaries are the simplices of dimension
1 included in f , etc.

...

S

s(0)

S1
1

s(1)

S0
1

S1
i

s(t)

S ′ ∈ V (S)

Figure 2: The interaction structure of a system S resulting from the subsystems of elements in interaction
at a given time step.

4 MGS Principles

The two previous sections give several examples to convince the reader that a topological approach of
the data and control structures of a program present some interesting perspectives for language design:
a data structure can be defined as a space (and there are many ways to build spaces) and a control
structure is a path specification (and there are many ways to specify a path).

Such a topological approach is at the core of the MGS project. Starting from the analysis of the
interaction structure in the previous section, our idea is to define directly the set S with its topological
structure and to specify the evolution function h by specifying the set St

i and the functions ht
i:

• the interaction structure S is defined as a new kind of data structures called topological collections;

• a set of functions ht
i together with the specification of the St

i for a given t are called a transformation.

We will show that this abstract approach enables an homogeneous and uniform handling of several compu-
tational models including cellular automata (CA), lattice gas automata, abstract chemistry, Lindenmayer
systems, Paun systems and several other abstract reduction systems.

These ideas are validated by the development of a language also called MGS. This language embeds
a complete, strict, impure, dynamically or statically typed functional language. We focus on the notions
required to understand the rest of the paper.

4.1 Atomic values.

Atomic values (like integers, floats, booleans, strings, symbols...) with their usual functions, are available.
Since MGS is a functional language, it has functions as first-class values. Functions are defined using the
construction fun like in fun max(x, y) = if (x > y) then x else y fi. Optional parameters can
be specified between brackets: fun succ[inc=1](x) = x + inc. In the application of the function, these
parameters can be omitted like in succ(0) which returns 1 or explicitly set: succ[inc=3](0) returns 3.

4.2 Topological Collections

The distinctive feature of the MGS language is its handling of entities structured by abstract topologies
using transformations [25]. A set of entities organized by an abstract topology is called a topological
collection. Here, topological means that each collection type defines a neighborhood relation inducing a
notion of subcollection. A subcollection S′ of a collection S is a subset of connected elements of S and
inheriting its organization from S. Beware that by “neighborhood relation” we simply mean a relationship
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that specify if two elements are neighbors. From this relation, a cellular complex can be built and the
classical “neighborhood structure” in terms of open and closed sets can be recovered [50].

A topological collection can be thought as a function with a finite support from a set of positions
(the elements of V (S)) to a set of values (the support of a function is the set of elements on which the
function takes a well defined value). Such a data structure is called a data field [18]. This point of view
is only an abstraction: the data structure is not really implemented as a function. This approach makes
a distinction between the content and the container. The notions of shape [32] and shape type [15] also
separate the set of positions of a data structure from the values it contains. Often there is no need to
distinguish between the positions and their associated values. In this case, we use the term “element of
the collection”. Let us give an example. A sequence can be seen as a partial function N → Value. The
support of a sequence of length n is the set {0, ..., n− 1}. The set of positions N must be given with the
neighborhood relation: i is neighbor of j iff j = i + 1.

Collection Types. Different predefined and user-defined collection types are available in MGS, in-
cluding sets, bags (or multisets), sequences, Cayley graphs of Abelian groups (which include several
unbounded, circular and twisted grids), Delaunay triangulations, arbitrary graphs, quasi-manifolds [51]
and some other arbitrary topologies specified by the programmer. We introduce some specific collection
types along with the examples.

The MGS interpreter provides a dynamically typed version of the language. However, a compiler is
under development and it is possible to enforce a static type discipline [10, 11]. There are two versions
of the type inference systems for MGS: the first one is a classical extension of the Hindley-Milner type
inference system that handles homogeneous collections. The second one is a soft type system able to
handle heterogeneous collection (e.g. a sequence containing both integers and booleans is heterogeneous).

The type system contains some particular types of the form [τ ]ρ for the collections where τ is the
type of the elements inside the collection, called the content type and ρ is its container type or topology.
A topology can be a symbol of the set {set, bag, seq, . . . } that contains the possible topologies of a
collection, or a topology variable that we will denote by the Greek letter θ. Let us remark that a topology
is not a type and that a topology variable θ cannot be used instead of a type variable α and vice-versa. A
function f of type [int]seq → bool is a predicate on sequence of integers, [α]seq → bool is a polymorphic
predicate that acts on any sequence of elements and a predicate of type [α]θ is a polytypic predicate
that acts on any collection. The primitive empty that returns true if its argument does not contain any
element is an example of the latter.

In order to deal with heterogeneous collections in our soft type system we use some union types,
previously used by other authors [1, 12, 16]. A value with the type τ1 ∪ τ2 has either the type τ1 or the
type τ2. Knowing that a value has the type τ1 ∪ τ2 you cannot conclude that it has the type τ1 nor that
it has the type τ2. The integer 1 has the type int and has also the type int ∪ bool.

Building Topological Collections. For any collection type T, the corresponding empty collection is
written ():T. The join of two collections C1 and C2 (written by a comma: C1,C2) is the main operation
on collections. The comma operator is overloaded in MGS and can be used to build any collection (the
type of the arguments disambiguates the collection built). So, the expression 1, 1+2, 2+1, ():set builds
the set with the two elements 1 and d3, while the expression 1, 1+2, 2+1, ():bag computes a bag (a set
that allows multiple occurrences of the same value) with the three elements 1, 3 and 3. A set or a bag
is provided with the following topology: in a set or a bag, any two elements are neighbors. To spare the
notations, the empty sequence can be omitted in the definition of a sequence: 1, 2, 3 is equivalent to
1, 2, 3,():seq.

4.3 Transformations

The MGS experimental programming language implements the idea of transformations of topological
collections into the framework of a functional language: collections are just new kinds of values and
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transformations are functions acting on collections and defined by a specific syntax using rules. Trans-
formations (like functions) are first-class values and can be passed as arguments or returned as the result
of an application.

The global transformation of a topological collection s consists in the parallel application of a set of
local transformations. A local transformation is specified by a rule r that specifies the replacement of a
subcollection by another one. The application of a rewriting rule σ ⇒ f(σ, ...) to a collection s:

1. selects a subcollection si of s whose elements match the pattern σ,

2. computes a new collection s′i as a function f of si and its neighbors,

3. and specifies the insertion of s′i in place of si into s.

One should pay attention to the fact that, due to the parallel application strategy of rules, all distinct
instances si of the subcollections matched by the σ pattern are “simultaneously replaced” by the f(si).

Path Pattern. A pattern σ in the left hand side of a rule specifies a subcollection where an interaction
occurs. A subcollection of interacting elements can have an arbitrary shape, making it very difficult to
specify. Thus, it is more convenient (and not so restrictive) to enumerate sequentially the elements of the
subcollection. Such enumeration will be called a path.

A path pattern Pat is a sequence or a repetition Rep of basic filters. A basic filter BF matches one
element. The following (fragment of the) grammar of path patterns reflects this decomposition:

Pat ::= Rep | Rep , Pat Rep ::= BF | BF /exp BF ::= cte | id | <undef>
where cte is a literal value, id ranges over the pattern variables and exp is a boolean expression. The
following explanations give a systematic interpretation for these patterns:

literal: a literal value cte matches an element with the same value. For example, 123 matches an element
with value 123.

empty element the symbol <undef> matches an element with an undefined value, that is, an element
whose position does not have an associated value.

variable: a pattern variable a matches exactly one element with a well defined value. The variable a
can then occur elsewhere in the rest of pattern or in the r.h.s. of the rule and denotes the value of
the matched element.

neighbor: b, p is a pattern that matches a path which begins by an element matched by b and continues
by a path matched by p, the first element of p being a neighbor of b. For some collection types, the
neighborhood relation can be made more precise. For example, in a two-dimensional grid, one may
look only for a neighbor along the |north> direction. This is simply written b |north> p.

guard: p/exp matches a path matched by p when the boolean expression exp evaluates to true. For
instance, x,y / y > x matches two neighbor elements x and y such that the value associated to y is
greater than the value associated to x.

Elements matched by basic filters in a rule are distinct. So a matched path is without self-intersection.
The identifier of a pattern variable can be used only once as a basic filter. That is, the path pattern x,x
is forbidden. However, this pattern can be rewritten for instance as: x,y / y = x.

Right Hand Side of a Rule. The right hand side of a rule specifies a collection that replaces the
subcollection matched by the pattern in the left hand side. There is an alternative point of view: because
the pattern defines a sequence of elements, the right hand side may be an expression that evaluates to
a sequence of elements. Then, the substitution is done element-wise: element i in the matched path is
replaced by the element i in the r.h.s. This point of view enables a very concise writing of the rules.

For some collection types it is possible to replace a subcollection by a collection with a different
shape. Such collections are termed as leibnizian and are opposed to newtonian collections6. Examples

6This term comes from the different visions of space Newton and Leibniz had [19].
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of leibnizian collections include sets, bags, sequences, graphs... A two-dimensional grid is an example of
a newtonian collection: one cannot replace an arbitrary subset of a grid by a subset with another shape
without destroying the 2D grid structure.

A Very Simple Transformation. The map function which applies a function to each element of a
collection is an example of a simple transformation:

trans map[f=\z.z] = {
x => f(x)

}
This transformation is made of only one rule. The syntax must be obvious (the default value of the
optional parameter f is the identity written using a lambda-notation). This transformation implements a
map since each element e of the collection is matched by the pattern x and will be replaced by f(e). This
transformation has type (α → β) → [α]θ → [β]θ and can be applied to any collection irrespectively to
its topology. Such functions are said to be polytypic [33]. Polytypism comes “for free” when considering
data structures in a uniform framework.

5 Simulation

In this section, we show through various examples the ability of MGS to concisely and easily express
the state of a dynamical system and its evolution function. More examples can be found on the MGS
web page7 and include: cellular automata-like examples (game of life, snowflake formation, lattice gas
automata...), various resolutions of partial differential equations (like the diffusion-reaction à la Turing),
Lindenmayer systems (e.g. the modeling of the heterocysts differentiation during Anabaena growth),
the modeling of a spatially distributed signaling pathway, the flocking of birds, the modeling of a tumor
growth, the growth of a meristeme, the simulation of colonies of ants foraging for food, etc.

5.1 The modeling of Dynamical Systems

5.1.1 Heat Diffusion in a Rod.

We will simulate the diffusion of heat H through a thin rod. The parabolic PDE ∂H
∂t = α∂2H

∂x2 that
describes the diffusion process can be discretized:

H(x, t + ∆t) = (1− 2c)H(x, t) + c(H(x− 1, t) + H(x + 1, t))

where H(x, t) is the temperature of the element x of the sequence at time t and the parameter c depends
on diffusion characteristics α of the rod (c is less than 0.5). Some boundary conditions can be added
to the model. We can easily write the corresponding MGS program that computes the evolution of the
temperature in the rod:

trans diffuse[c=0.25, Hleft=0, Hright=0] = {
x / (left(x) == <undef>) => Hleft;
x / (right(x) == <undef>) => Hright;
x => (1-2*c)*x + c*(right(x) + left(x))

}
The two first rules deal with the boundary conditions given by parameters Hleft and Hright. The
operators right and left give access to the neighbors in a sequence. The special value <undef> is
returned as the value associated with a position that does not have an associated value. The plot at the
left of Fig. 3 gives an illustration of the output.

In the previous model, a sequence is used to describe the discretized rod. Bags can also be used to
represent the same physical phenomena by using a different point of view. The rod is still discretized as

7http://mgs.lami.univ-evry.fr
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Figure 3: Result of the heat diffusion with two different models. The boundaries of the rod are kept at 0◦C. In
the initial condition, only the middle third has a non zero temperature. In the two diagrams, the time goes from
back to front.

a sequence of small boxes but this time we adopt a “Individual-based Modelling” approach. Each box
contains some particles that represent a quantum of heat. We can represent each quantum of heat in the
box x by an occurrence of the integer x in the bag. In this way, the state of the rod is a bag of integers.
The cardinal of the bag represents the total amount of heat in the rod.

The corresponding evolution function is simple to state: a quantum of heat in a box x is allowed to
jump in one of the neighbor boxes or to stay in its current box. The corresponding transformation is
trivial in MGS:

trans diffuse = { n => n + random(-1, 0, 1) }
Two others rules can be added to deal with the boundary conditions. The function random chooses
randomly one of its argument. The probability of choosing an argument instead of another is related to
the parameter c in the continuous formulation. Indeed c is the probability for a particle to change its
state. As a consequence and because each box has two neighbors, the probability to stay in the same
state is 1 − 2c as it appears in the continuous equation. The right plot in Fig. 3 presents the stochastic
version of the heat diffusion. In this simulation, they are 2500 quanta of heat in 30 boxes.

5.1.2 The DLA Evolution Function in MGS

Diffusion Limited Aggregation, or DLA, is a fractal growth model studied by T.A. Witten and L.M.
Sander, in the eighties. The principle of the model is simple: a set of particles diffuses randomly on a
given spatial domain. Initially one particle, the seed, is fixed. When a mobile particle collides a fixed
one, they stick together and stay fixed. For the sake of simplicity, we suppose that they stick together
forever and that there is no aggregate formation between two mobile particles.

This process leads to a simple CA with an asynchronous update function or a lattice gas automata with
a slightly more elaborate rule set. This section shows that the MGS approach enables the specification of
a simple generic transformation that can act on arbitrary complex topologies.

The transformation describing the DLA behavior is really simple. We use two symbolic values ‘free
and ‘fixed to represent respectively a mobile and a fixed particle. There are two rules in the transfor-
mation:

1. the first rule specifies that if a diffusing particle is the neighbor of a fixed seed, then it becomes
fixed (at the current position);
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Figure 4: From left to right: the final state of a DLA process on a torus, a chess pawn, a Klein’s bottle and
an hexagonal meshes. The chess pawn is homeomorphic to a sphere and the Klein’s bottle does not admit a
concretization in Euclidean space. These two topological collections are values of the quasi-manifold type. Such
collection are build using G-map, a data-structure widely used in geometric modeling [38]. The torus and the
hexagonal mesh are GBFs.

2. the second one specifies the random diffusion process: if a mobile particle is neighbor of an empty
place (position), then it may leave its current position to occupy the empty neighbor (and its current
position is made empty).

Note that the order of the rules is important because the first has priority over the second one. Thus, we
have :

trans dla = {
‘free, ‘fixed => ‘fixed, ‘fixed
‘free, <undef> => <undef>, ‘free

}
This transformation is polytypic and can be applied to any kind of collection, see Fig. 4 for a few results.

5.2 The modeling of Dynamical Systems with a Dynamical Structure (DS)2

The previous examples are examples of continuous or discrete “classical dynamical systems”. We term
them “classical” because they exhibit a static structure: the state of the system is statically described
and does not change with the time. This situation is simple and arises often in elementary physics. For
example, a falling stone is statically described by a position and a velocity and this set of variables does
not change (even if the value of the position and the value of the velocity change in the course of time).

However, in some systems, it is not only the values of state variables, but also the set of state variables
and/or the evolution function, that changes over time. We call these systems dynamical systems with a
dynamic structure following [22], or (DS)2 in short. As pointed out by [20], many biological systems are
of this kind.

To illustrate the use of MGS in the simulation of (DS)2, we want to model a growing sheet of interacting
cells. We take into account three phenomena: the tension and pressure between cells, the diffusion and
reaction of two chemicals and the cell division that is driven by the concentration of one of the chemicals.
The problem is that, due to the cell movements and division, the immediate neighbors of a cell evolve
with the time. An illustration of the result is given in Fig. 5.

We use a Delaunay triangulation to compute the neighborhood of the cells. The Delaunay triangula-
tion of a set of points is a collection of edges satisfying an ”empty circle” property: for each edge we can
find a circle containing the edge’s endpoints but not containing any other points. In MGS, we start by
defining the type of the collection that represents a cell:

record MecaCell = {x, y, z, vx, vy, vz, fx, fy, fz};;
record BioCell = {a, b, da, db, c};;
record Cell = MecaCell + BioCell;;
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specify two record types, the first having the fields x, y, z, etc., representing the position of the cell and its
velocity and acceleration; the second having the fields a, b, etc., representing the two diffusing chemical
and their first derivative. The record Cell contains the fields of both MecaCell and BioCell .

We then define a Delaunay collection type. The specification:

collection delaunay(3) D3 =
\e.if Cell(e) then (e.x, e.y, e.z) else ?("bad element for D3 type") fi ;;

defines a new Delaunay collection type in 3 dimensions. The type, called D3 , is parameterized by a user
function that extracts from each element in the collection, an abstract coordinate. In this example, the
coordinate are simply stored in the value that represents a cell and the function simply checks that the
cell’s value has a correct type and returns its coordinate (as a sequence of 3 floats).

The movement of the cells results from the elastic and viscous forces in the Newton’s equation of
dynamics:

m.
d2F

dt2
= Felastic + Fviscous = −k(L− L0)− µ

dF

dt

The spring term has a constant k, the rest length is L0 and µ is a viscous parameter. This equation is
integrated for each cell by a simple method implemented by the transformation:

trans Meca = {
e => let f = neighborsfold(sum(e), {fx=0,fy=0,fz=0}, e)

in e + { x = e.x + dt*e.vx,
...
vx = e.vx + dt*f.fx,
...
fx = f.fx,

}
}

The primitive neighborsfold iterates over the neighbors of a cell e. This primitive uses the function
parameterizing the type D3 to compute the neighbors of a given element. The expression in the let
assignment computes the sum of the interaction force between a cell c and the neighbor cells; this sum is
then used to update the state of the cell c. The operator + on records is an asymmetric merge: the fields
of r = r1 + r2 are the fields of both r1 and r2 and r.a has the value of r2.a if a is a field of r2 else the
value of r1.a.

The diffusion and reaction of the two chemicals is modeled as a simplified version [55] of the Turing’s
diffusion-reaction model [54]. The evolution of the two chemicals is also implemented with only one
transformation, using also a neighborsfold to compute the Laplacian of the concentrations.

Figure 5: Four steps in the growth of a sheet of cells. The color of a cell is correlated with the concentration of
the chemical that triggers the cell division (black cell will divide).
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At last, when the concentration of b increases above a given level, the cell divides, which is implemented
by the transformation:

trans Division = {
e / e.b > lsplit => (e + {a=e.a/3, b=e.b/3}),

(e + {a=e.a/3, b=e.b/3, x=noise(e.x), y=noise(e.y), ...})
}

The coefficient 3 used to compute the repartition of the concentration in the daughter cells is arbitrary;
the function noise disturbs a little its argument by adding a very small random quantity.

6 Programming in the Small: Algorithmic Examples

The two previous sections show the adequation of the MGS programming style to model and simulate
various dynamical systems. However, it appears that the MGS programming style is also well fitted for the
implementation of algorithmic tasks. In this section, we show some examples that support this assertion.
More examples can be found on the MGS web page and include: the analysis of the Needham-Schroeder
public-key protocol [42], the Eratosthene’s sieve, the normalization of boolean formulas, the computation
of various algorithms on graphs like the computation of the shortest distance between two nodes or the
maximal flow, etc.

6.1 Gamma and the Chemical Computing Metaphor

In MGS, the topology of a multiset is the topology of a complete connected graph: each element is the
neighbor of any other element. With this topology, transformations can be used to easily emulate a
Gamma transformations [3, 4]. The Gamma transformation on the left is simply translated into the MGS
transformation on the right:

M = do
rp x1, . . . , xn

if P (x1, . . . , xn)
by f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

=⇒
trans M = {

x1, . . . , xn

/ P (x1, . . . , xn)
=> f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) }

and the application M(b) of a Gamma transformation M to a multiset b is replaced in MGS by the
computation of the fixpoint iteration M[iter=‘fixpoint](b). The optional parameter iter is a sys-
tem parameter that allows the programmer to choose amongst several predefined application strategies:
f [iter=‘fixpoint](x0) computes x1 = f(x0), x2 = f(x1), ..., xn = f(xn−1) and returns xn such that
xn = xn−1.

As a consequence, the concise and elegant programming style of Gamma is enabled in MGS: refer to
the Gamma literature for numerous examples of algorithms, from knapsack to the maximal convex hull
of a set of points, through the computation of prime numbers. See also the numerous applications of
multiset rewriting developped in the projects Elan [53] and Maude [52].

One can see MGS as “Gamma with more structure”. However, one can note that the topology of a
multiset is “universal” in the following sense: it embeds any other neighborhood relationship. So, it is
always possible to code (at the price of explicit coding the topological relation into some value inspected
at run-time) any specific topology on top of the multiset topology. We interpret the development of
“structured Gamma” [14] in this perspective.

6.2 Two Sorting Algorithms

A kind of bubble-sort is straightforward in MGS; it is sufficient to specify the exchange of two non-ordered
adjacent elements in a sequence, see Fig. 6. The corresponding transformation is defined as:

trans BubbleSort = { x,y / x > y ⇒ y,x }
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The transformation BubbleSort must be iterated until a fixpoint is reached.
This is not really a bubble sort because swapping of elements happen at arbitrary places; hence an

out-of-order element does not necessarily bubble to the top in the characteristic way.
Bead sort is a new sorting algorithm [2]. The idea is to represent positive integers by a set of beads,

like those used in an abacus. Beads are attached to vertical rods and appear to be suspended in the air
just before sliding down (a number is read horizontally, as a row). After their falls, the rows of numbers
have been rearranged such as the smaller numbers appears on top of greater numbers, see Fig. 6. The
corresponding one-line MGS program is given by the transformation:

trans BeadSort = { ‘empty |north> ‘bead ⇒ 1, ‘empty }
This transformation is applied on a Grid2 . The symbol ‘empty is used to give a value to an empty
place and the symbol ‘bead is used to represent an occupied cell. The l.h.s. of the only rule of the
transformation BeadSort selects the paths of length two, composed by an occupied cell at north of an
empty cell. Such a path is replaced by a path computed in the r.h.s. of the rule. The r.h.s. in this
example computes a path of length two with the occupied and the empty cell swapped.
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Figure 6: Left: Bubble sort. Right: Bead sort [2].

6.3 Hamiltonian Path.

A graph is a MGS topological collection. It is very easy to list all the Hamiltonian paths in a graph using
the transformation:

trans H = {
x* / size(x) = size(self) / Print(x) / false => assert(false)

}
This transformation uses an iterated pattern x* that matches a path (a sequence of elements neighbor
two by two). The keyword self refers to the collection on which the transformation is applied, that is,
the entire graph. The size of a graph returns the number of its vertices. So, if the length of the path x
is the same as the number of vertices in the graph, then the path x is an Hamiltonian path because
matched paths are simple (no repetition of an element). The second guard prints the Hamiltonian path
as a side effect and returns its argument which is not a false value. Then the third guard is checked and
returns false, thus, the r.h.s. of the rule is never triggered. The matching strategy ensures a maximal
rule application. In other words, if a rule is not triggered, then there is no instance of a possible path
that fulfills the pattern. This property implies that the previous rules must be checked on all possible
Hamiltonian paths and H(g) prints all the Hamiltonian path in g before returning g.

7 Conclusion: Programming in the Large ?

7.1 Current Status and Related Work

The topological approach we have sketched here is part of a long term research effort [26] developed
for instance in [18] where the focus is on the substructure, or in [21] where a general tool for uniform
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neighborhood definition is developed. Within this long term research project, MGS is an experimental
language used to investigate the idea of associating computations to paths through rules. The application
of such rules can be seen as a kind of rewriting process on a collection of objects organized by a topological
relationship (the neighborhood). A privileged application domain for MGS is the modeling and simulation
of dynamical systems that exhibit a dynamic structure.

Multiset transformation is reminiscent of multiset-rewriting (or rewriting of terms modulo AC). This
is the main computational device of Gamma [3], a language based on a chemical metaphor; the data
are considered as a multiset M of molecules and the computation is a succession of chemical reactions
according to a particular rule. The CHemical Abstract Machine (CHAM) extends these ideas with a focus
on the expression of semantic of non deterministic processes [5]. The CHAM introduces a mechanism to
isolate some parts of the chemical solution. This idea has been seriously taken into account in the notion
of P systems. P systems [44, 45] are a recent distributed parallel computing model based on the notion
of a membrane structure. A membrane structure is a nesting of cells represented, e.g, by a Venn diagram
without intersection and with a unique superset: the skin. Objects are placed in the regions defined by
the membranes and evolve following various transformations: an object can evolve into another object,
can pass trough a membrane or dissolve its enclosing membrane. As for Gamma, the computation is
finished when no object can further evolve. By using nested multisets, MGS is able to emulate more or
less the notion of P systems. In addition, patterns like the iteration + go beyond what is possible to
specify in the l.h.s. of a Gamma rule.

Lindenmayer systems [39] have long been used in the modeling of (DS)2 (especially in the modeling of
plant growing). They loosely correspond to transformations on sequences or string rewriting (they also
correspond to tree rewriting, because some standard features make particularly simple to code arbitrary
trees, cf. the work of P. Prusinkiewicz [47, 46]). Obviously, L systems are dedicated to the handling of
linear and tree-like structures.

There are strong links between GBF and cellular automata (CA), especially considering the work of Z.
Róka which has studied CA on Cayley graphs [48]. However, our own work focuses on the construction of
Cayley graphs as the shape of a data structure and we develop an operator algebra and rewriting notions
on this new data type. This is not in the line of Z. Róka which focuses on synchronization problems and
establishes complexity results in the framework of CA.

A unifying theoretical framework can be developed [23, 25], based on the notion of chain complex
developed in algebraic combinatorial topology. However, we do not claim that we have achieved a useful
theoretical framework encompassing the previous paradigm. We advocate that few topological notions
and a single syntax can be consistently used to allow the merging of these formalisms for programming
purposes.

The current MGS interpreter is freely available at the URL http://mgs.lami.univ-evry.fr. All the
examples in this paper have been processed with this interpreter. The results have been stored into a
file using a variety of formats and visualized using either Mathematica or Imoview (an OpenGL viewer
developed within the MGS project).

7.2 Programming in the Large ?

The previous presentation shows the ability of MGS to handle complex models of DS and to concisely
express several algorithms. However, these examples illustrate only the “programming in the small” task
and do not address the problem of the “programming in the large”, that is the problems raised by the
support of large software architecture, the interconnection of modules, the hiding of information, the
capitalization and the reuse of existing code, etc. Programming in the large is certainly one of the major
challenge a programming language must face [13]. We mention very briefly some of the possible supports
provided by a topological approach to the “programming in the large” activity.

First, we advocate that the polytypic approach enables a better code reuse because it widens the
applicability of the code. The topological approach, providing a unified framework for all data structure,
promotes the development of polytypic and reusable functions.

Then, the underlying ideas of the MGS topological approach are smoothly embedded in a functional
language: a transformation is a function, a topological collection type acts as an opaque type, etc. So,
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all the notions developed to help the programming in the large within functional languages, are also
available: modules or packages and functors [37], mixin [41, 31], preprocessing tools, etc.

More directly, topological notions can be used to formalize inheritance restructuring [43]. The aim
is to infer or restructure the inheritance hierarchy of classes in an object oriented language to achieve
smaller, consistent data structure and better code reuse. The corresponding tools apply equally well to
modules refactoring. The problem of inferring a class hierarchy from a set of concrete objects can be
rephrased as the inclusion relation of a simplex in which the criteria used by Moore [43] and others to
constrain the class hierarchy are topological constraints that have a simple and intuitive meaning [27].

This last work opens the way to a topological basis for a “module interconnection language” for
knitting those modules together into an integrated whole and for providing an overview that formally
records the intent of the programmers and that can be checked for consistency by a compiler. The idea is
to represent the services required or provided by a class, a module, a mixin or any code fragment, as the
boundaries of a cellular space [30]. The boundary can then be merged to assemble code fragments into
an integrated whole. This kind of geometric representation is a promising perspective, see for instance
the preliminary work of F. Lamarche [36], where the free variables in a term correspond to the borders
of a complex and the substitution is represented by the gluing of complexes along their simplices.
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Figure 7: Formation of a snowflake modeled as a cellular automata on an hexagonal mesh in MGS. The
pictured states are the step at time steps 1, 4, 8, 12, 16, 18, 20 and 23.

Figure 8: Each sphere in the picture above corresponds to a cell attracted by its neighboring cells by a spring.
The neighborhood of a cell is computed dynamically using a Delaunay triangulation built from the cells position.
At each time step, this neighborhood can change. The first picture is the initial state and shows the neighborhood
using links between the cells. The second picture shows the final state, when the system has reached an equilibrium
(each ”tube” in this picture represents the successive positions of a cell). In MGS, the Delaunay collection type is
a type constructor corresponding to the building of collections with a neighborhood computed from the positions
of the elements in a d-dimensional Euclidean space.
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Figure 9: Eden’s model on a grid and on an hexagonal mesh (initial state, and states after the 3 and the 7 time
steps). The Eden’s aggregation process is a simple model of growth. The model has been used since the 1960’s
as a model for such things as tumor growth and growth of cities. In this model (specifically, a type B Eden
model), a 2D space is partitioned in empty or occupied cells. We start with only one occupied cell. At each step,
occupied cells with an empty neighbor are selected, and the corresponding empty cell is made occupied. This
process simply described as exactly the same transformation for both cases:

trans Eden = { x,<undef> / x ⇒ x,true }
We assume that the boolean value true is used to represent an occupied cell, other cells are simply left undefined.
Then the previous rule can be read: an occupied element x and an undefined neighbor are transformed into two
occupied elements. This model cannot be coded by only one simple rule on a two-state cellular automata if one
wants to avoid that two distinct occupied cells preempt the same unoccupied cell.
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