
LaMILaboratoire de Méthodes Informatiques
MGS: a Programming Language for theTransformations of Topologial ColletionsJean-Louis Giavitto & Olivier Mihelemail(s) : giavitto ou mihel �lami.univ-evry.fr

Rapport de Reherhe no 61-2001
Mai 2001CNRS � Université d'Evry Val d'Essonne523, Plae des TerrassesF�91000 Evry Frane

MGS: a Programming Language for theTransformations of Topologial ColletionsJean-Louis Giavitto & Olivier MihelLaMI u.m.r. 8042 du CNRSUniversité d'Evry Val d'Essone91025 Evry Cedex, Frane.[giavitto,mihel℄�lami.univ-evry.frLaMI tehnial report N◦ 61-2001, May 2001
AbstratWe present the �rst results in the development of a new delarative programminglanguage alled MGS. This language is devoted to the simulation of biologial proesses,espeially those whose state spae must be omputed jointly with the running state ofthe system (for instane, in morphogenesis).MGS proposes a uni�ed view on several omputational mehanisms. Some of themare initially inspired by biologial or hemial proesses (Gamma and the CHAM, Lin-denmayer systems, Paun systems and ellular automata). They share the property ofspeifying loal transformations in spae and time.The basi omputation step in MGS replaes in a olletion A of elements, some sub-olletion B, by another olletion C. The olletion C is funtion solely of B and itsadjaent elements in A. The pasting of C into A−B depends on the shape of the involvedolletions. This step is alled a transformation.The organisation of the elements into the olletions is viewed from a topologial view-point. A formal framework to speify this notion of topologial olletions is proposed.By hanging the topologial struture of the olletion, the underlying omputationalmodel is hanged.The spei�ation of the olletion to be substituted an be done in many ways. Wepropose here a pattern language based on the neighborhood relationship indued by thetopology of the olletion. Several features to ontrol the transformation appliations arethen presented. KeywordsTopologial olletion, transformation, delarative programming language, simulationof biologial proesses, dynamial systems, dynamial struture, Gamma, CHAM, P sys-tem, L system, ellular automata, rewriting, rule based programming, ombinatorial al-gebrai topology, hain omplex, hain group.

The authors of this researh report an be ontated at:La.M.I., CNRS UMR 8042Université d'Évry Val d'EssonneTour Évry 2 / 4eme etage523 Plae des terrasses de l'agora91000 Évry Cedex FraneTel: +33 (0)1 60 87 39 04Fax: +33 (0)1 60 87 37 89The MGS interpreters are freely available, by sending a demand to giavitto or mihel �lami.univ-evry.fr . The MGShome page is loated at url http://www.lami.univ-evry.fr/~mgs .Versions of this report:� Revision september 2001: Added example 4.10 and appendix B, some additional referenes and aknowledge-ments, orretions of typos.� Initial Version: may 2001.Copyrights 2001 Jean-Louis Giavitto, Olivier Mihel; LaMI � Université d'Evry Val d'Essonne and CNRS.

Table of Contents1 Motivations 11.1 Dynamial Systems and their State Strutures. 11.2 DS with a Dynamial Struture . 31.3 Chemial Reations . 31.4 Game of Life . 51.5 Embryogenesis . 61.6 Protein transport and Golgi Formation . 81.7 Cell Division . 91.8 Summary of the Examples . 102 MGS Basi Ideas 112.1 The Conept of Transformation in a Colletion . 112.2 Colletions as Spaes . 132.3 The MGS Projet: Modeling Biosystems with a Dynamial Struture with Topologial Colletionsand their Transformations . 142.4 Organization of the Rest of this Report . 153 An MGS Quik Tour 173.1 Funtions, Sentenes and Programs . 173.2 Colletions . 183.2.1 Monoidal Colletions . 183.2.2 The topologies of Monoidal Colletions . 193.2.3 User-De�ned Monoidal Subtypes . 203.2.4 Strutural Reursion on Monoidal Colletions . 203.3 Reords . 223.4 Pattern, Rule and Transformations . 223.4.1 Patterns . 233.4.2 Rules . 243.5 Managing the Appliations of a Transformation . 254 Examples of MGS Programs 274.1 Maximal Element . 274.2 Map and Sum . 274.3 Sorting a Sequene . 284.4 Convex Hull . 284.5 Eratosthene's Sieve on a Set . 294.6 Eratosthene's Sieve on a Sequene . 294.7 Maximum Segment Sum . 314.8 Tokenization . 314.9 Token moving on a Ring . 334.10 Morphogenesis Triggered by a Turing Di�usion-Reation Proess 355 Topologial Colletions and their Transformations 39

5.1 Organization of this setion . 395.2 Cellular Spaes and Combinatorial Struture of Complexes . 405.3 Star, Link and Connetions . 425.4 Chain Complex . 445.5 Chain Group with Coe�ient in an Arbitrary Abelian Group 455.6 Example of the C(K, Z/2, ∂) Chain Complex . 475.7 The Struture of the Chain Group with Coe�ient . 495.8 Duality: Cohain, Coboundary and Cohain Complex . 515.9 Arbitrary Labeling the Cells of a Complex . 545.10 Topologial Colletions . 565.11 Transformations . 585.12 The Example of a 2D Grid . 625.13 Summary . 626 Comparaison with Other Approahes 656.1 The topology of Sets and Multisets: the programming language Γ and the CHAM 656.2 Nesting of Multisets: P systems . 666.3 The Topology of Sequenes: L systems . 676.4 The Topology of Arrays: Cellular Automata . 686.5 Prodution Systems, Rewriting systems and All That . 686.6 A Comparison with the Multi-Agent Modeling Paradigm . 697 Conlusion 73A An MGS Grammar 75B Full Code of the Turing+Morphogenesis Example 79C Review of Some Notions Related to the Group Struture 83

List of Figures1 Evolution of a predator-prey system. 22 DS with a simple dynamial struture. 43 Some rules for a lattie gas automata. 64 During the neurula stage, the neural plate is folded to shape a tube. 65 Plant growth in presene of obstrution. 76 Protein tra�king. 87 A basi transformation of a olletion. 128 Transformation and iteration of a transformation. 129 The subtyping hierarhy of olletion kinds. 1910 The Eratos program. 3011 Tokenisation of a sequene of letters . 3312 The Turing di�usion-reation proess. 3413 The Turing di�usion-reation proess oupled with a morphogenesis. 3714 Examples of omplexes build from polygons. 4115 An abstrat omplex. 4116 An abstrat omplex annot handle orientation. 4317 Examples of star and link. 4318 Connetion and shape of a set. 4319 Examples of a non-homologial and an homologial omplex. 4520 Appliation of the boundary operator. 4821 Oriented omplexes. 4922 The dual ∂ and δ operators. 5423 The labeling of the ell of an abstrat omplex. 5524 Depition of the boundary and oboundary operation on hains. 5625 Parts of a omplex involved in a substitution. 6026 Substitutions in a line graph. 6127 Modelling of 2D grids. 6228 A simpli�ation of the neurulation for simulation purposes. 69

List of De�nitions1. Bounded Poset (P, <) . 422. Abstrat Complex . 423. Subomplex, Star and Shape . 424. Connetions . 445. Loally �nite omplex . 446. Chain Complex . 447. Chain Group with Coe�ient in an abelian group G . 468. Compatible Boundaries . 479. The free Chain Group . 5010. Cohains . 5111. Dual Homomorphism . 5212. Coboundary Operator δ . 5313. Cohain Complex . 5314. Topologial Colletion . 5715. Split, Path and Subolletion . 5816. Shape-preserving, Pointwise and Loal Operations . 5817. Renaming Operations . 5818. Split, Path and Non-Loal Substitutions . 5919. Simple Transformation . 59

1 MotivationsWe want to developp a framework dediated to the simulation of dynamial systems witha dynamial struture. The appliation area we have in mind is the simulation of somebiologial proesses, espeially those whose state spae must be omputed jointly with therunning state of the system. This tehnial report is organized as follow:Setion 1 gives our motivations. After a very brief presentation of the notions related tothe dynamial systems, we introdue the notion of dynamial struture through someexamples.Setion 2 skethes an uni�ed framework to desribe dynamial system with a dynami stru-ture. The notions of olletion, subolletion and transformation are desribed.Setion 3 ontains a brief desription of the MGS programming language. This languageimplements a subset of the previous ideas.Setion 4 illustrates the MGS language through paradigmati examples.Setion 5 presents the �rst development of a formal desription of the MGS onstrutions,using mathematial notion developped in the �eld of algebrai topology. Our main goalin this setion is to introdue some of the topologial notions upon whih a theory oftransformations an be build.Setion 6 makes a omparison with other approahes: the Gamma language and the CHAM,Lindenmayer systems, Paun systems and ellular automata. A omparaison with theapproah of multi-agent systems, often advoated in the simulation of omplex dynam-ial systems, is also developped.Setion 7 onludes this report by giving some diretions opened by this work.1.1 Dynamial Systems and their State Strutures.A dynamial system (or DS in short) orresponds to a phenomenon that evolves in time.The phenomenon is loated on a system haraterized by � observables �. The observablesare alled the variables of the system, and are linked by some relations. The value of thevariables evolves with the time. The set of the values of the variables that desribes thesystem onstitutes its state. The state of a system is its observation at a given instant. Thestate has often a spatial extent (the speed of a �uid in every point of a pipe for example).The temporal sequene of state hanges is alled the trajetory of the system.Intuitively, a DS is a formal way to desribe how a point (the state of the system) movesin the phase spae (the spae of all possible states of the system). It gives a rule telling uswhere the point should go next from its urrent loation (the evolution funtion). Thesenotions are illustrated in Fig.1.We are interested in the simulation of suh systems. This requires the spei�ation of thesystem state and the evolution funtion. This spei�ation an be very di�ult to ahieve
1

Trajetories x(t) and y(t)

50 100 150 200 250 300

5

10

15

y(t)

x(t)
20 Constraints in the evolution of x and y

dx

dt
= Ax − Bxy

dy

dt
= −Cy + DxySolving the onstraints gives the trajetory of

x(t) and y(t) starting from some initial state.The evolution of a variable is periodi.

5 10 15 20

2

4

6

8

10

12 Evolution in the phase spae (x, y)The three urves orrespond to the yli evolu-tion of the system starting from three di�erent ini-tial onditions. A point in this plot orrespondsto a state (x, y). A urve orresponds to the evo-lution (x, y)(t). The periodiity of the trajeto-ries of x and y gives a losed urve. There is afourth urve redued to a �xed point. The imageby the evolution funtion of this point is itself.This point is haraterized by dx/dt = dy/dt = 0(no hange).Figure 1: Evolution of a predator-prey system (a DS with a stati struture).The system is haraterized by two variables: x orresponds to the number of predators and y to the numberof preys in some eologial system. The number of preys hanges beause of the growth of the populationand beause the preys are eaten by the predators. The number of births is proportional to the number ofpreys and the derease is proportional to the number of prey-predator enounters, whih is itself proportionalto the produt xy. The number of predators dereases beause the ompetition between predators and theinrease is proportional to the hane of prey-predator enounters. The resulting di�erential equations speifythe evolution funtion. They an be integrated to plot the trajetory of x and y (top piture) and the stateevolution (bottom piture). The struture of the system is stati in the sense that the state of the system isalways desribed as an element of R
2.

2

beause of the omplexity of the desription of the phase spae and of the evolution funtion.However, more we know about the phase spae, more we know about the DS behavior. Forexample, if the phase spae is �nite, every trajetory is �nally yli.Very often the phase spae has some struture and this struture an be used to simplifythe desription of the state and its evolution and to gain some knowledge about the system.For example, one may speify the evolution funtion hi for eah observable oi and reover theglobal evolution funtion h as a produt of the � loal � hi.Standard DS exhibit a stati struture, that is, the exat phase spae of the DS an beknown statially before the simulation. For instane, in the example of a �uid �owing througha pipe, sine the geometry of the pipe is not subjet to hange, the struture of the stateis not a funtion of time (and the phase spae orresponds to the vetor �elds on the stativolume of the pipe).1.2 DS with a Dynamial StrutureThe a priori determination of the phase spae annot always be done. This situation is usualin biology [Fon92, FB94, FB96℄ for instane in the modeling of plant growing, in develop-mental biology, integrative ell models, protein transport and ompartment simulation, et.This aount for the fat that the struture of the phase spae must be omputed jointly withthe running state of the system. In this ase, we say that the DS has a dynamial struture.Often, the desription of DS with a dynamial struture is espeially hard.In this kind of situation, the dynami of the system is often spei�ed as sev-eral loal ompeting transformations ourring in an organized set of simplerentities. The organization of this set is subjet to possible drasti hanges inthe ourse of time and is a plain part of the state of the DS.A simple example is given in �gure 2. This example is simple beause the struture of thestate at timet does not depend of the previous trajetory (the states at time t′ < t). However,the usual ases are muh more intriated and di�ult to speify.This is best shown on some examples. The following examples play a entral role in themotivations of the framework presented in setion 2 and were very in�uential on the urrentwork. They exhibit some key properties we want to emphasize and preise the kind of entities,organizations and transformations we have in mind. They outline some important featuresneeded for a language devoted to the simulation of DS with a dynamial struture.The reader not interested by our motivations, may omit the rest of this setion and godiretly to setion 2 page 11.1.3 Chemial ReationsSuppose that we have a system onsisting in two moleules of type a and one moleule of type
b �oating in a test tube at time t. The state of the system an be represented by the multiset

3

1 11 1
1

4
2

1
11
2

1

4
2

8

h

Figure 2: DS with a simple dynamial struture. The state of the system is a vetor of integers.If at time t the state st is an element of Z
q, then the state st+1 at time (t + 1) is an element of Z

q+1omputed as follows. The ith element of st+1 is equal to the ith element of st and the (q + 1)thelement of st+1 is equal to the sum of all previous elements. It is easy to see that the set St ofthe possible states at time t is Z
t if S1 = Z. Then, the set S of all possible states (at any time) is

S = Z
∗ = Z

1 ∪ Z
2 ∪ ... ∪ Z

n ∪ This DS has a dynamial struture beause St 6= S. It is alwayspossible to onsider S instead of the sets St but a lot of informations on the system struture is lost.In this example, the evolution funtion h is simple to speify and the funtion H that gives the set
St+1 from st ∈ St is very simple: H(st) does not depend on the value st but only on St. Then itis easy to infer the set S as ⋃

Ht(Z). Setions 1.3 to 1.7 give some examples where the funtion Hreally depends of the preise value of the state.
{| a, a, b |}. We suppose that one a and one b an reat together to give two c (reation α) andthat two c reat together to give one d (reation β) only in the presene of a (a is a atalyst).Starting from {| a, a, b |} a reation α may our. So, at time t+1 the state of the system isrepresented by {| a, c, c |}. At time t + 1 there is no more subpart {| a, b |} in the system. Thenthe evolution rule α annot be applied anymore. However, the reation β may be applied togive a new state {| a, d |}.At this point no more reation an our and we an say that the system has reahed a�xpoint (or an equilibrium). We an resume the trajetory of the system by:

{| a, a, b |}t
α
−→ {| a, c, c |}t+1

β
−→ {| a, d |}t+2We have deided to model the state of the system rudely by the multiset of moleulespresent in the test tube. Then, the point is that the evolution of the system annot bedesribed by evolution rules linked solely to one basi system element a, b, c or d. In thisase, it is natural to link the evolution rule, a hemial reation a + b → c + c, to a subpart

{| a, b |} of the whole system. Note that reation β an be modeled as onsuming one a andproduing one a: c + c + a→ d + a and then this rule an be linked to the subpart{| c, c, a |}.However, a is left unhanged and it is perhaps more natural to say that the rule c + c→ d islinked with subpart {| c, c |} but holds only if there is some a.With this partiular hoie of representation, the subparts of the system are hangingwith the appliation of a rule. At time t + 1 there is no more subpart {| a, b |} in the systemand the evolution rule α annot be applied anymore. At time t + 2 there is no more subpart
{| a, b |} nor subpart {| a, c, c |} and no rule at all an apply. Although the phase spae an beharaterized uniformly as a multiset, the number of elements of this multiset is hanging, aswell as the evolution rules that an be used to make the system evolves. This is why we say

4

that this DS exhibits a dynami struture.Obviously another hoie of state representation avoids this burden. For instane, thesystem an be modeled as four numbers quantifying the number of moleules a, b, c and dpresent in the test tube. With this representation, the phase spae is uniformly N
4. How-ever, we insist here on this partiular model where eah individual moleule is expliitlyrepresented. The reader austomed to the usual hemial models an be disturbed by thispoint of view, but one may imagine a situation where a moleule annot be abstrated by aninteger and requires its expliit appearane in the model. More generally, it does not alwaysexist a representation of the system state that avoids the hange of the phase spae, or thisrepresentation is not always desirable.The points we want to emphase, are:� The evolution of the system is spei�ed as a set of evolution rules.� An evolution rule gives the evolution of a subpart of the system.� We insist that the subparts subjet of these rules are in general not redued to only oneelement.1.4 Game of LifeThe game of life is a partiular type of ellular automata (f setion 6.4 for a more generaldesription of ellular automata). It an be desribed in the following way. Eah element ofan array represents a ell in two possible states: dead or alive. A dead ell surrounded by3 alive neighbors beomes alive. An alive ell surrounded by less than three alive neighborsbeomes dead from isolation. An alive ell surrounded by more than three living neighborsdies by starvation.In this example, one sees that the global state of the system is desribed by the state ofall the ells. The evolution funtion for one ell depends on both the urrent state of theell and the state of the neighbors. However, in the ontrary of the preeding example, thesubpart of the system whih evolves is the ell x alone, and not the ell x together with theother arguments of the evolution funtion (the neighbors). Indeed, the neighbors evolve forthemselves, even if their urrent state interat in the evolution of other ells. Put in otherwords, the states of the neighbors are not onsumed by the evolution of ell x.This is perhaps better explained by ontrast with an alternative of ellular automata:lattie gas automata. In this formalism, a set of moleules moves in a grid. So, a ell ina grid has a state indiating if the ell is empty or if it ontains one (or several) moleulemoving in a given diretion. Moleules interat when they meet in a ell. Figure 3 gives someexamples of rules. In opposition with the game of life approah, a rule spei�es the evolutionof simultaneously several ells. However, the evolution funtion is loal in the sense that theinterating ells are onneted.The two examples stress the spae organization of the elements of the system. Beingpresent at the same time (in a hemial solution as in the preeding example) is not asu�ient ondition to interat. They must moreover be neighbors. However, this onept of

5

Figure 3: Some rules for a lattie gas automata.neighborhood is �xed here one and for all, beause the evolution of a ell gives again a ellin the same plae (or in lattie gas automata, the evolution of a subpart gives a subpart withexatly the same shape).The points whih we want to underline are the followings:� The elements of the system have a strong spatial organization, whih de�nes a oneptof neighborhood.� Two elements an only interat if they share a neighbor relationship.� The interation speifying the evolution of an element does not neessarily desribe theevolution of the partiipating neighbor elements.1.5 EmbryogenesisThe preeding example shows a strong spatial organization of the entities whih ompose thedynamial system (at least ompared with the hemial solution). This spatial organizationis however stati. Here an example, drawn from biology, whih needs intrinsially a dynamispatial organization.During the development of an embryo, several domains of ells hange their shapes. Forinstane, the neural tube is formed dorsally in the embryoni development of Vertebrates bythe joining of the 2 upturned neural folds formed by the edges of the etodermal neural plate,giving rise to the brain and spinal nerve ord; see �gure 4.In general, the morphogenesis of biologial systems is a onsequene of the loal evolutionof ells like growing and proliferation, mobility, di�erentiation and apoptosis (programmateddeath of ells). There is no entralized ontrol, only the di�usion of hemial signals from aell to its neighbors and the own internal evolution of the ell.
Figure 4: During the neurula stage, the neural plate is folded to shape a tube.

6

The state of the entire system annot be redued to the set of the state of the ells beausesuh representation misses the information related to the neighborhood of eah ell. And theneighborhood of a ell hanges in time. For example, some ells on the boundary of the neuralplate are glued together and beome internal ells at the end of the neurula stage.The neighborhood of eah ell is of paramount importane to evolution of the systembeause of the interplay between the shape of the system and the state of the ells. Theshape of the system has an impat on the di�usion of the hemial signals and hene on theells state. Reiproally, the state of eah ell determines the evolution of the shape of thewhole system. This example if further developped in setion 6.6.The hanges in the boundary of a ell are due to ell mobility, apoptosis and proliferation.These auses are � internal � to the DS. The hanges in the neigborhood of a ell an also beaused by a hange in the environment (the onditions outside the system), e.g. a hange inthe geometry of the embedding spae, the enounter with an obstale or an obstrution, et.See for example the hange of growth in a plant enountering an obstale, in �gure 5.In the neurula stage and in the plant growth, the interations are still done betweenneighboors elements. The ells at the boundary of the neural plate beome neighbors whenthe plate is folded, and the growth unit of a plant beomes a neighbor of a wall or anothergrowth unit. The evolution is then still spei�ed through loal rule, even if the struture ofthe DS is hanging. The global hange in the DS struture, is the � sum � of the loal hanges.The points we want to emphasize are:� The struture of the DS, that is, the organization of its elements, may depend of externalor internal fators.� However, the evolution of the system is always spei�ed through loal rules. It is theresult of all the loal hanges that gives the global hange of the system.

Figure 5: Plant growth in presene of obstrution. This �gure represents the growth of a plant,as it an be modeled by a L system (f. setion 6.3), using the repliation of a growth unit with avariation in size and orientation. However, � external � fators disturb the repliation proess. Forexample, walls put onstraints or stop the repliation. And even the plant itself makes obstrutionsto its own development.
7

1.6 Protein transport and Golgi FormationIn the previous examples, the system is deomposed in atomi entities (moleules, growthunits) or homogeneous entities (ells with a more or less omplex state). However, thedeomposition of the system is not always restrited to one level and an be further re�ned.Here we sketh an example whih is of great importane for the simulation of the ellfuntioning: the proesses by whih proteins are physially transported through membranoussystems to the plasma membrane or other organelles, or from the ell surfae to organelleswithin the ell. A proposed mehanism onsists of small membranous vesiles. A solubleprotein is arried within the lumen of a vesile, and an integral membrane protein is arriedwithin its membrane. The �gure 6 illustrates the nature of the budding and fusion events bywhih the vehiles move between adjaent ompartments.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

vesicle buds from membrane

vesicle fuses with target compartment

coat is removed

cytosol

vesicle contacts target membrane

target compartment

vesicle released with the coat proteins

cytosol

donor compartment

Figure 6: Protein tra�king. Membranes vesiles bud from a donor ompartment and are sur-rounded by oat proteins. The oated vesile binds to a target ompartment, is unoated, and fuseswith the target membrane, releasing its ontent. (From [Lew97, h. 34: Protein Tra�king℄.)To simulate these mehanisms, we must represent the ompartment volumes, the mem-brane surfaes and the proteins (whih may be assimilated to points). In addition to thegeometry of these entities, one must represent the density of the proteins on the surfaesoat (it is hypothesized that the urvature of the membrane depends of the presene of someproteins in the oat), or of vesile in a volume (e.g. to ompute the hane of a vesile toenounter the target membrane and the release level of proteins). In addition, there are somereations between proteins and mehanial e�ets on the membrane and vesile. Furthermore,membrane may be polarized.
8

This example exhibits a very omplex spatial organization. The system an be deom-posed in ompartments and vesiles. Vesiles are dynamially reated (it is also hypothesizedthat some ompartment, like the Golgi, may be reated as the dynami equilibrium of ag-gregations/separations of the vesiles released by the endoplasmi retiulum). A vesile or aompartment an be further re�ned into a membrane, a lumen (the volume inside the om-partment) and eventually a oat. A ompartment may inlude other ompartments, et. Thetopology implied by the representation of these entities is tridimensional (ompartments),bidimensional (membranes) and zero dimensional (moleules). Some models also use tenseg-rity strutures to explain the mehanis of the membranes. Then, one-dimensional struturesmust be introdued to represent the ytoskeletal �laments that allow the ell to resist thedistortion of shape when a mehanial stress is applied to it. Obviously, the interation thatmust be desribed depends of the dimension of the entity: for instane, a �ow of moleulesan be oneived only through a membrane boundary between two ompartments, not be-tween a �lament and another moleule; onservation laws depend on the topologial natureof the entities, et.The moral of the story is that the deomposition of a system may exhibit a dynamialomplex organization, requiring the desription of arbitrary hanging topology. The ompletedesription of the system must inlude several heterogeneous interating viewpoints (geom-etry of the system, hemial ativity, mehanial state, eletrial ativity, et.) at severallevels.1.7 Cell DivisionSuppose that we have a system onsisting in one ell c �oating in a test tube at time t. Theell c is desribed by a state s. This ell is in a state suh that it divides. At time t + 1we have 2 ells c1 and c2 with states s1 and s2 in the test tube. The point is that it wouldbe very irrelevant to say that c1 (resp. c2) is the ell c in the new state s1 (resp. s2). Asa matter of fat1, the division proess is supposed to be symmetri and it will be arbitraryto identify one of the ell at time t + 1 as � the previous ell � and the others as the � new,hildren ell �. In other word, when an amoeba divides, it is irrelevant to ask whih one ofthe two orresponds to the initial amoeba.The point we want to fous is a little subtle: onfronted to a DS with a stati struture,it is easy to deompose the system in �xed parts, to attah some behavior to these parts andto oneive that these parts have a well de�ned identity in time. This is no longer true whenthe parts of the system are hanging, beause it will be very arbitrary to identify one partin the ourse of the time. This does not mean that only a global desription is possible. Itmeans that the right unit of desription are the interating parts and that the orrespondingdeomposition hanges in time. We ome bak to the problem of identifying a de�nite partsamong the time in setion 6.6 when we ompare the MGS approah with the multi-agentparadigm).1We suppose that there is no speial information in the state to uniquely identify the ell. The strutureof the ell state onsists solely in the information needed to desribe the funtioning of the ell and ells areindistinguishable by their funtioning. 9

1.8 Summary of the ExamplesThe previous examples were very in�uential for our motivations. To summarize, we are inquest of a programming language dediated to the simulation of dynamial systems with adynamial struture. Suh a language must take into aount the following features:1. The evolution of the system is spei�ed as a set of evolution rules.2. An evolution rule gives the evolution of a subpart of the system.3. We insist that the subparts subjet of these rules are in general not redued to only oneelement.4. The elements of the system have a strong spatial organization, whih de�nes a oneptof neighborhood.5. Two elements interat only if they are neighbors (rules are loal).6. The interation speifying the evolution of an element does not desribe neessarily theevolution of the partiipating neighbor elements.7. The struture of the DS, that is, the organization of its elements, may depend of externalfator, or internal ones.8. However, the evolution of the system is always spei�ed through loal rules. It is thesum of all loal hanges that gives the global hange of the system.9. The deomposition of a system may exhibit a dynamial omplex organization, requiringthe desription of arbitrary hanging topology.10. The omplete desription of the system must inlude several heterogeneous interat-ing viewpoints (geometry of the system, hemial ativity, mehanial state, eletrialativity, et.) at several levels.11. The parts of the system does not have a remanent identity.

10

2 MGS Basi Ideas2.1 The Conept of Transformation in a ColletionReturning to the idea expressed in setion 1.2 page 3, our goal is to provide a general sup-port for the notions of � organized set � and � loal ompeting transformations � that arise inthe previous examples. From this point of view, the previous examples share the followingommon harateristis.Disrete spae and time. The struture of the DS state onsists of a disrete olletion ofelements. We all olletion a set of elements with some � organization � (to be lari�edlater). This disrete olletion evolves in a sequene of disrete time steps2.If the state of a system onsists in a olletion, the elements in this olletion do nothave a remanent identity in time beause the organization of the olletion may hangewith the struture of the system. In other words, the olletion redues to a olletionof values.It is tempting, and we will do so, to separate the � shape � (i.e. the organization) of theolletion and its ontent (the values).Complex Organization. Several kinds of organizations (of values) are used in programminglanguages and give raise to several data strutures: sets, multisets (or bags), sequenes,arrays, trees, terms, et. However, the desription of a DS often exhibits more omplexorganizations. For instane, the organization of a DS is often based on the 3-dimensionaltopologial struture of the physial entities in the system.Temporally loal transformation. The omputation of a new value in the new state de-pends only on values omputed for a �xed number of preeding steps, and usually justone step.Spatially loal transformation. The omputation of a new olletion is done by a stru-tural ombination of the results of more elementary omputations involving only a smalland stati subset of the initial olletion.� Small and stati subset � makes expliit that only a �xed subset of the initial elementsare used to ompute a new element value.� Strutural ombination �, means that the elementary results are ombined into a newolletion, irrespetively of their preise value. The global organization of the newolletion results of the ombination of these loal hanges.2Independantly of the disrete or ontinuous nature of the entities that have to be represented in themodeled systems, they must be disretized �nally for their omputer representation. We have deided todelegate this problem upstream of the programming. It implies that there is no speial feature embedded intoour framework dediated to the expliit support of ontinuous entities (like ODE or PDE solvers, ontinuoustime representation, et.). For instane, the system of two di�erential equations of �gure 1 must �rst beingdisretised (e.g., as a �nite di�erene sheme xt+1 = hx(xt, yt) and yt+1 = hy(xt, yt)) and these disreteequations are the base of the orresponding simulation program.
11

Considering these harateristis, we propose to idealize the desription of a DS evolution bythe following abstrat omputational mehanism:1. a subolletion A is seleted in a olletion C;2. a new subolletion B is omputed from the olletion A;3. the olletion B is substituted for A in C.This proessus is pitured in Fig. 7. We all these three basi steps a basi transforma-tion of the olletion. A transformation, without the � basi � quali�er, onsists in severalnon interating basi transformations applied in parallel to a olletion. A transformationorresponds to one evolution step of the DS. Then, the iteration of transformations builds theentire DS trajetory, f. Fig. 8.In addition to the spei�ation of the underlying organization, the de�nition of a basitransformation requires the spei�ation of the subolletion A and the replaement B. Thisspei�ation de�nes a rule and must adapt several onstraints and variations. We proposeto base the spei�ation of the organization and of these onstraints on topologial onepts.For example, in the game of life, the value of a ell c at time t + 1 depends on the valueof the neighboring ells at time t. If we identify the value of the ell c at time t with the
y = f(x’)x

T

BAC T(C)Figure 7: A basi transformation of a olletion. Colletion C is of some kind (set, sequene,array, yli grid, tree, term, et). A rule T spei�es that a subolletion A of C has to be substitutedby a olletionB omputed from A. The right hand side of the rule is omputed from the subolletionmathed by the left hand side x and its possible neighbors x′ in the olletion C.
T T(T(C))T(C)C

...

Figure 8: Transformation and iteration of a transformation. A transformation T is a set ofbasi transformations applied synhronously to make one evolution step. The basi transformationsdo not interat together. A transformation is then iterated to build the suessive states of the system.
12

subolletion A, then the olletion B must be omputed not only from A but also from theneighbors of A in the olletion C.This abstrat desription of one evolution step of a olletion makes possible the uni�a-tion in the same framework of various omputational devies. The trik is just to hange theorganization of the underlying olletion. In setion 6 we try to reformulate several paradigms(like the CHAM, P systems, L systems and ellular automata), as transformations of someolletions.2.2 Colletions as SpaesAs a matter of fat, it is very natural to see these olletions as a set of plaes or positionslabeled by a value. Then, the organization of a olletion is seen as a topology de�ningthe neighborhood of eah element in the olletion and also the possible subolletions. Tostress the importane of the topologial organization of the olletion's elements, we all themtopologial olletion .A subolletion is a set of onneted elements. If the element x in a olletion is a neighborof the element y, we write x, y. Additional onditions an be put to onstrain the possiblesubolletions. A subolletion has itself a topology inherited from the main olletion. Thetopology is used to onstrain the possible transformations and the dependanes between theolletions A, B and C.For example, one may deide that neighbors of an element in a sequene are its twoadjaent elements (exept for the �rst and the last element in the sequene whih have onlyone neighbor). A subsequene C′ of C is a onneted subset of the elements of C. This meansthat the possible subsequenes of a sequene ℓ are the intervals of ℓ. Additional onditionsan be put to onstrain the possible subolletions. For instane, one may want to onsideronly the sequene pre�xes or the sequene su�xes for the subolletions, but no arbitraryintervals.This topologial approah to formalizing the notion of olletion is part of a long termresearh e�ort [GMS96℄ developed for instane in [Gia00℄ where the fous is on the substru-ture, or in [GM01℄ where a general tool for uniform neighborhood de�nition is developed.In this researh program, a data struture is viewed as a spae where some omputationours and moves in this spae. The notion of neighborhood is then used to ontrol theomputations. In this report, we propose a formal framework in setion 5 that fouses onthe transformation of topologial olletions, where the basi omputation mehanisms is thesubstitution of subolletions.The topology needed to desribe the neighborhood in a set or a sequene, or more generallythe topology of the usual data strutures, are fairly poor. They are skethed in setion 6.So, one may ask if the formal mahinery developped in setion 5 is worthwhile. Atually,the previous examples show the need of omplex topologies. And more importantly, thetopologial framework uni�es various situations. Our ultimate goal is to develop a generiimplementation based on these notions.
13

2.3 The MGS Projet: Modeling Biosystems with a Dynamial Struturewith Topologial Colletions and their TransformationsThese ideas lead to the development of an experimental programming language alled MGS.MGS is the vehile used to investigate general notions of olletions and transformations, andto study their adequay to the simulation of various biologial proesses with a dynamialstruture.We will show in setion 6 that the notion of topologial olletion and their transformationare able to take into aount in a same unifying framework several biologially and biohem-ially inspired omputational models, namely: Γ and the CHAM, P systems, L systems andellular automata (CA). We do not laim that topologial olletion are a useful theoretialframework enompassing all these formalisms. We advoate that few notions and a singlesyntax an be onsistently used to allow their merging for programming purposes.In the urrent MGS implementations sets, multisets and sequenes of elements are sup-ported3. This is already a step forward in the quest of a good programming language dediatedto the simulation of biosystems with a dynamial struture. Indeed, even if we restrit to thesedatatypes, MGS allows some kind of rewriting on multisets and sequenes. This paradigm isadvoated in reent papers for the modeling of biologial systems [Man01, FMP00℄. To quote4Fisher et al. [FMP00℄:� a biologial systems is represented as a term of the form t1 + t2 + · · · + tnwhere eah term ti represents either an entity or a message [signal, ommand,information, ation, et.℄ addressed to an entity. Computation, [i.e., simulationof the physial evolution of the biosystem℄ is ahieved through term rewriting,where the left hand side of a rule typially mathes an entity and a messageaddressed to it, and where the right hand side spei�es the entity's updated state,and possibly other messages addressed to other entities. The operator + that joinsentities and messages is assoiative and ommutative, ahieving an � assoiativeommutative soup �, where entities swim around looking for messages addressedto them. [...℄This assoiative ommutative soup allows objet to interat in a rather unstru-tured way, in the sense that an interation between two objets is enabled simplyby virtue of their both being present in the soup. This still does not fully addressissues of strutural interations between entities or system parts. �A severe shortoming of this view is the total lak of spatial organization. The needto represent more strutured organizations (than sequene and multiset) of entities and mes-sages is stressed and motivates several extensions of rewriting (see for one example amongstothers [BH00℄). However, a general drawbak with these approahes is that they work with3At the date of may 2001, it exists two versions of an MGS interpreter. One written in OCAML and onewritten in C++. There are some slight di�erenes between the two versions. For instane, the OCAML version ismore omplete with respet to the funtionnal part of the language. These interpreters are freely available,by sending a demand to [giavitto|mihel℄�lami.univ-evry.fr.4with some adaptations in the terminology, brakets are our omments14

a �xed topology of entities, and it is not obvious at all how to extend this to systems wherethe number of entities and their relationships are onstantly hanging.This is preisely one of the main motivation of the MGS researh projet. One of our goal isto validate the ontribution of the topologial approah to the (spei�ation and simulationof the) dynamial organization of biosystems. By superseding the rewriting of terms bythe transformation of topologial olletions, we hope to go beyond the limitations of thepreeding formalisms. To paraphrase the previous quotation:A olletion is used to represent the state of a DS. The elements in the olletionrepresent either entities (a subsystem or an atomi part of the DS) or messages(signal, ommand, information, ation, et.) addressed to an entity.A subolletion represents a subset of interating entities and messages in thesystem. The evolution of the system is ahieved through transformations, wherethe left hand side of a rule typially mathes an entity and a message addressed toit, and where the right hand side spei�es the entity's updated state, and possiblyother messages addressed to other entities.If one uses a multiset organization for the olletion, the entities interat in arather unstrutured way. More organized topologial olletions are used for moresophistiated spatial organizations and interations.2.4 Organization of the Rest of this ReportThe MGS language is presented informally in setion 3 through some examples. Simple ex-amples of MGS programs are given in the next setion. All examples are proessed using theurrent version of the MGS interpreter.A possible formalization is presented in setion 5 for the theoretially inlined reader.Several formalization of MGS are possible. We present one whih is general enough and givessome insights for a generi implementation.Then, in setion 6, we sketh how Γ and the CHAM, P systems, L systems and ellularautomata (CA) an be emulated in MGS. Our goal is mainly to sketh the topology of theusual sets, bag, sequene and arrays data strutures.This report �nishes by the review of some diretions opened by this researh.

15

16

3 An MGS Quik TourMGS is the aronym of � (enore) un Modèle Géneral de Simulation (de système dy-namique) � (yet another General Model for the Simulation of dynamial systems). MGS em-beds the idea of topologial olletions and their transformations into the framework of asimple dynamially typed funtional language. Colletions are just new kinds of values andtransformations are funtions ating on olletions and de�ned by a spei� syntax usingrules. MGS is an appliative programming language: operators ating on values ombine val-ues to give new values, they do not at by side-e�et. In our ontext, dynamially typedmeans that there is no stati type heking and that type errors are deteted at run-timeduring evaluation. Although dynamially typed, the set of values has a rih type strutureused in the de�nition of pattern-mathing, rule and transformations.This setion ontains a brief desription of the main features in MGS onerning funtions,olletions, transformations and their appliations. Elements of the MGS syntax are giventhrough examples. Some examples of atual ode are given in this and the following setionto give a �avor of the language.3.1 Funtions, Sentenes and ProgramsMGS is a small higher-order funtional language. This means that funtions are like any otherkinds of primitive values (suh as integers, �oats, strings, et.): they are �rst lass values andan be passed as arguments to other funtions or returned as results.Lambdas and Named Lambdas. The denotation of funtional values is based on thelambda-alulus; for example:
\x.\y.x + ydenotes a urry�ed funtion expeting one argument value X, that binds to x, and returninga funtion ating like \y.X + y. The syntax of a funtion appliation is the usual one witharguments surrounded by brakets: (\x.\y.x+ y)(3). Funtions may have several arguments.For instane,
\(x, y).x + yis a funtion returning the sum of its two expeted arguments. Another syntax is used togive a name to the funtion:
fun Plus(x, y) = x + ySuh expression reates a funtional value and assigns this value to a global variable (Plus inthis example), thus the previous de�nition is equivalent to the expression Plus = \(x, y).x+y.We say that Plus is a named lambda. The name an be used instead of the anonymouslambda-expression in the funtion appliation, e.g. Plus(3, 4). Named lambdas enable thediret oding of reursive funtion:
fun fact(x) = if (x == 0) then 1 else x ∗ fact(x− 1) fi

17

Primitive Funtions. The operator + that appears in the body of Plus is an exampleof a primitive funtional onstant (or � primitive funtion � in short). There is a rih setof suh funtions to manage the primitive values. Primitive funtions an be used exatlylike any other named lambdas, they just are already de�ned when the interpreter is up. Thename of a primitive funtion always begins with a bakquote ' . Somme primitive funtionshave an additional speial syntax for their appliation, like + whih is the in�x form forthe appliation of 'addition. That is, expression 3 + 4 is a short hand for the expression'addition(3, 4) .Sentenes and Programs. An MGS program is omposed of a sequene of sentenes. Asentene �nishes by a double semi-olons � ; ; �. There are three kinds of sentenes:1. expressions,2. type delarations,3. ommands.The evaluation of an expression triggers the omputation of somme value. The previousde�nition of funtion Plus is an exemple of an expression with a funtional value. Theexpression Plus(3, 4) is an example of an expression that omputes an integer.A type delaration does not trigger any omputation. It just tell the interpreter that somenew name an be used at some plae in further expressions (see below the use of types asprediates).Finally, ommands are outside the sope of the language and are used to interat with theinterpreter beyond the usual read-eval-print toplevel loop : one an inlude some �le, divertthe output stream, list the named funtions or the de�ned types, save the urrent session,et.3.2 ColletionsIn addition to basi values like integers, �oats, strings, lambda-expressions, et., MGS handlesreords and several other kinds of olletions. The elements in a olletion an be any kind ofvalues: basi values, reords or arbitrary nesting of olletions. The values of the reord's �eldsare also of any kind, thus ahieving omplex objets in the sense of [BNTW95℄. Colletionsare (sub-)typed. The tree in Fig. 9 gives the type hierarhy of olletions.3.2.1 Monoidal ColletionsSeveral kinds of topologial olletions are supported by MGS. We fous here on sets, multisetsand sequenes. These kinds of olletion are alled monoidal beause they an be build as amonoid with operator join � , �: a sequene orresponds to a join that has no speial property(exept assoiativity), multisets are obtained with ommutative joins and sets when theoperator is both ommutative and idempotent.
18

recordmonoidal

seqbagset

AnotherSetMySet

array

collection

...pair

Figure 9: The subtyping hierarhy of olletion kinds. MySet and AnotherSet are user-de�nedolletion types, f. setion 3.2.3. Types olletion and monoidal do not orrespond to onretedata strutures, but to prediates, f. below. Coneptually, a reord is a set of pairs (�eld-name,�eld-value) but it is managed through dediated operators, f. setion 3.3.There is a large amount of generi operations available for all olletion kinds, based onthe funtion algebra developed for instane in [BNTW95℄. The following table gives the mainonstrutors for monoidal olletions.empty addition singleton ombinationSet set : () insert single_set(x) unionBag bag : () inrement single_bag(x) munionSeq seq : () :: single_seq(x) �overloaded add mergesyntax , ,3.2.2 The topologies of Monoidal ColletionsThe join operator with its properties diretly indues the topology of the olletion and theneighborhood relationship. So, it is not a oinidene that the neighborhood relationship insetion 2.2 and the join operation here are denoted by the same omma.� Topology of Sets. In a set, an element x is neighbor of any other element y.� Topology of Multisets. The topology of a multiset is the same as the topology of a set:two arbitrary elements are always neighbors. The di�erene is, the same element mayappear more than one time in the multiset.� Topology of Sequenes. The topology of a sequene is the expeted one: if the sequenehas at least two elements, then all elements exept the �rst and the last have twoneighbors (alled the left and the right neighbor). The �rst and the last element haveonly one neighbor (respetively a right and a left neighbor). If the sequene is reduedto a singleton, then this singleton as no neighbor.These neighboring relations are indued by the join operations: if x, y then x is a neighboorof y. For instane, using assoitivity and the ommutativity of the join of sets, the set� 1,
set

2,
set

3 � an be written � 1,
set

(2,
set

3) � whih shows that 2 and 3 are neighbors, but alsoit an be written � (1,
set

2),
set

3 � or � 2,
set

(1,
set

3) � whih show that 1 and 2 are neighboor aswell as 1 and 3. 19

3.2.3 User-De�ned Monoidal SubtypesOften there is a need to distinguish several olletions of the same kind (e.g. several multisetsnested in another multiset). Various ways an be used to ahieve the distintion. For instane,in the P system formalism, eah multiset is labeled by a unique integer to referene themunambiguously. We hose to distinguish between olletions of the same kind by types. Thetype of a olletion must be thought of as a tag that does not hange the struture of theolletion. Types are organized by a subtyping relationship. The subtyping relation organizestypes into a poset. The kind of a olletion onstitutes the maximal element of this hierarhy.Colletion type delarations look like:
collection MySet = set;

collection AnotherSet = set;

collection AnotherMySet = MySet ;

MySet AnotherSet

AnotherMySet

set

These three delarations spei�es a hierarhy of three types. Type AnotherMySet is asubtype of MySet whih is a subtype of set. The type set is prede�ned and orresponds toa olletion kind (other prede�ned types are seq for sequenes and bag for multisets). Thetype AnotherSet is also a subtype of set but is not omparable with MySet.A type introdued by a type delaration an later be used in pattern-mathing (f. se-tion 3.4) or as a prediate to test if a value is of a given type. A monoidal olletion type analso used in the building of a olletion by the enumeration of its elements:
1, 1 + 1, 2 + 1, 2 ∗ 2, MySet : ()is an expression evaluating to the set of four integers: 1, 2, 3 and 4. The olletion kind isa set, and its type is MySet. Atually, expression � Myset : () � denotes the empty MySetand � , � is the overloaded join operator: x,X reates a new olletion with the element xmerged with the elements of olletion X; and expression X, Y reates a new olletion withelements of both olletions X and Y .The type of a olletion is taken into aount for several olletion operations. For in-stane, the join of two olletions of type P and Q gives a olletion with type R orrespond-ing to the ommon anestor of P and Q. With the previous example, set is the ommonanestor of MySet and AnotherSet). Another example, MySet is the ommon anestor ofAnotherMySet and itself.3.2.4 Strutural Reursion on Monoidal ColletionsThe two overloaded operators oneof and rest are suh that for any non empty monoidalolletion, we have:
C = oneof(C) , rest(C)

20

Together with the empty primitive prediate, they makes possible to de�ne a form of struturalreursion for monoidal olletions:
fun Iter(e, g) = \C.if empty(C)

then e(C)

else g(oneof(C), Iter (e, g)(rest(C)))

fiThe intent of the expression Iter(e, g) is to de�ne a funtion h suh that:
h(X : ()) = e(X : ())

h((a,C)) = g(a, h(C))where X is the kind of the olletion, e a unary funtion that gives the value of h on the emptyolletion and g a ombining binary funtion. Please note that h is a unary funtion, so inexpression h((a,C)) the funtion h is applied to the olletion built by the join5 of a with C.This kind of funtion de�nitions (whih de�ne homomorphisms) is so ommon that Iteris a primitive funtion alled fold in MGS:
h = fold[g, e]Note that square brakets are used instead of braes beause the arguments g and e areoptional arguments with some default values6 (the default values are suh that fold de�nesthe identity funtion on olletion).The funtion fold is alled an iterator. An iterator an be used to easely de�ne veryuseful other funtions. We give three examples. The sum of all elements in a olletion anbe de�ned by:
fold[\(a, c).a + c, \x.0]As a seond example, the famous map funtion is de�ned in MGS as:
fun map(f) = fold[\(a, c).(f(a), c), \x.x]Note that with this de�nition, we have a generi map that an at on any monoidal olletion.On sets for instane, the meaning7 of map is map(f)({a1, .., an}) = {f(a1), .., f(an)}. Finally,the generalization of the powerset funtion to the other olletion kinds an be de�ned as:
Power = fold[\(a,C).(C, map(\c.(a, c))(C)), \x.add(x, x)]5When there is an ambiguity between the appliation of a funtion to several arguments and the join ofseveral arguments, the former interpretation is hosen. Braes an be used to fore the other interpretation,as in this ase here.6We do not detail further these features as they are not relevant for our purpose here.7Be areful that, for the sake of the explanation, we use the notation {a, b, c} to denote the set of the threeelements a, b and c. Previously we have used the notation {| a, b, c |} for a multiset. And below, we use thenotation <a, b, c> to express the sequene of the three elements a, b and c. However, these onstrutions arenot part of the MGS syntax. The building of a olletion through the enumeration of its elements uses the joinoperator in MGS. 21

where add(x,C) adds the element x to the olletion C. On sets, the Power(S) build thepower set of S. On sequenes, Power(L) built a sequene of all the subsequenes of the list
L; for instane,

Power(<1, 2, 3>) = <<>, <3>, <2>, <2, 3>, <1>, <1, 3>, <1, 2>, <1, 2, 3>> .3.3 ReordsAn MGS reord is a speial kind of olletion. An MGS reord is a map that assoiates a valueto a name alled �eld. The value an be of any type, inluding reords or other olletions.Aessing the value of a �eld in a reord is ahieved with the dot notation: expression
{a = 1, b = "red"}.b evaluates to the string "red".Reords an be merged with the overloaded + operator. Expression r1 + r2 omputesa new reord r having the �elds of both r1 and r2. Then r.a has the value of r2.a if the�eld a belongs to r2, else the value of r1.a (asymmetri merge with priority to the seondargument [Rém92℄).For reords, type delarations look like

state R = {a};

state S = {b, c̃}+ R;

state T = S + {a = 1, d : string};(state is the keyword used to introdue the de�nition of a reord type in MGS). The �rstdelaration spei�es a reord type R whih onsists of the reords with at least a �eld named a.Types an be used as prediates:
R({a = 2, x = 3})evaluates to true beause the reord {a = 2, x = 3}) has a �eld a. The seond delarationde�nes S whih has all the �elds of R plus a �eld b and no �eld c. The + operator betweenreord types emulates a kind of inheritane. The de�nition T speializes type S by onstrain-ing the �eld a to the value 1 and saying that an additional �eld d must be present and be astring.3.4 Pattern, Rule and TransformationsA transformation T is a set of basi transformations or rules :
trans T = { ... rule; ... }When there is only one rule in the transformation, the enlosing brakets an be dropped.A transformation is a �rst-lass value and some operators exist to ombine transformations.For instane, the transformation (T1 + T2) is the transformation obtained by merging the setof rules of T1 and the set of rules of T2.

22

A rule is a basi transformation taking the following form:
pattern => expressionwhere pattern in the left hand side (lhs) of the rule mathes a subolletion A of the olletion

C on whih the transformation is applied. The subolletion A is substituted in C by theolletion B omputed by the expression in the right hand side (rhs) of the rule. There arealso several kinds of rules, as detailed below.3.4.1 PatternsWe present the pattern expressions that have a generi meaning, that is, they an be inter-preted against any olletion kind. The grammar of the pattern expressions is:
Pat ::= x | {...} | p, p′ | p + | p ∗ | p : P | p/exp | p as x | (p)where p, p′ are patterns, x ranges over the pattern variables, P is a prediate and exp is anexpression evaluationg to a boolean value. The explanations below give an informal semantisfor these patterns.variable: a pattern variable x mathes exatly one element. The variable x an then ourelsewhere in the rest of the rule both as a pattern or in an expression. Atually, thepattern x is the abbreviation of � . as x � where the pattern � . � mathes exatly oneelement.state pattern: {...} are used to math one element whih is a reord. The ontent of thebraes an be used to math reords with or without a spei� �eld (eventually on-strained to a given �eld type or �eld value). For instane, {a, b : string, c = 3, d̃} isa pattern that mathes a reord with �elds a, b of type string and c with value 3, andno �eld d.neighbor: p, p′ is a pattern that mathes two onneted olletions p and p′. For example,
x, y mathes two onneted elements (i.e., x must be a neighbor of y). The onnetionrelationship depends of the olletion kind.repetition: pattern p+ (resp. p∗) mathes a non empty subolletion of elements mathedby p (resp. a possibly empty subolletion).binding: a binding p as x gives the name x to the olletion mathed by p. This name anbe used elsewhered in the rest of the rule. The evaluation of a pattern variable x inan expression returns the subolletion previously mathed. When reused as a patternvariable, the pattern x is interpreted as (y/y == x) where y is a fresh variable. Forexample, x, x is equivalent to x, (y/y == x) .guard: p/exp mathes the olletions mathed by the pattern p verifying exp. Pattern p : Pis a syntati suggar for ((p as x)/P (x)) where x is a fresh variable. For instane,
x : MySet �lters an element of type MySet. Another example: y / y > 3 mathes aninteger bigger than 3. 23

Here is a ontrived example. The pattern
(x : int/x < 3) + as S / card(S) < 5 & Fold[+](S) > 10selets a subolletion S of integers less than 3, suh that the ardinality of S is less than 5and the sum of the elements in S is greater than 10. If this pattern is used against a sequene(resp. set) (resp. multiset), S denotes a subsequene (resp. a subset) (resp. a sub-multiset).Some pattern onstruts are spei� to a olletion kind. For example, the onstrut� ,̂ x � is used to selet an element whih has no left neighbor in a sequene. Suh pattern hasno meaning when the transformation is applied for instane to a set, and an error is raised.Another example of a spei� onstrut are the operators left and right. They an be usedin the guard of a pattern (or in the rhs of a rule) to refer to the element to the right or to theleft of a mathed subsequene. These onstrutions depend on the topology of the olletionand we plan to develop a generi and systemati spei�ation of these operators using thenotion of boundary.3.4.2 RulesA transformation is a set of rules. When a transformation is applied to a olletion, thestrategy is to apply as many rules as possible in parallel. A rule an be applied if its patternmathes a subolletion. Several features are used to have a �ner ontrol over the hoie ofthe rules applied within a transformation.Exlusive and inlusive rules. Exlusive rules onsume their arguments: a subolletionmathed by an exlusive rule annot interset a subolletion mathed by any other rule.Inlusive rules don't have this kind of onstraint. They are mainly used to transformindependent parts of a omplex objet8. This is best explained by an example:
{x as v} +=> {x = v + 1}

{y as v} +=> {y = 2 ∗ v}are two inlusive rules (beause the arrow is +=>) mathing respetively a reord with a�eld x and a reord with a �eld y. So they an both apply to the reord {x = 2, y = 3}. Aninlusive rule of form r +=> r′ where r is a reord pattern and r′ an expression evaluating toa reord, replaes the mathed reord R by R+r′. So, the result of applying the two previousrules to {x = 2, y = 3} is {x = 3, y = 6}. This result is omputed as
(
{x = 2, y = 3}+ {x = 2 + 1}

)
+ {y = 2 ∗ 3}or (

{x = 2, y = 3}+ {y = 2 ∗ 3}
)

+ {x = 2 + 1}and is independent of the order of appliation of the two rules. Indeed, the rules work onindependent parts of the reord, both for aessing or updating the value of a �eld.8Currently, only a rhs mathing a reord is allowed in an inlusive rule, but the idea must be extended tonested olletions. The onept of inlusive rule may appear very spei�. However, it is a very e�etive wayto ut down the ombinatorial explosion of the behavior spei�ations.24

Priority. Exlusive rules are applied before any inlusive rules. A priority an be assoiatedto eah rule, to speify a preedene order within eah lass (the priority of inlusive rulesmay be used to speify the relative order of their appliations).Loal variables and onditional rules. MGS is not a purely funtional language. Imper-ative loal variables an be attahed to a transformation and updated by side e�ets in therhs of the rules. These variables an be used in a rule guard allowing the onditional use ofa rule. For instane, the transformation
trans T [a = 0] = {...; R = x ={ on a < 5 }=> (a := a + 1; 2 ∗ x); ...}spei�es a rule R whih is applied at most 5 times (within the evaluations triggered by oneappliation of T). The body ={ · · · }= of the arrow de�nes an � on lause �. The expressionlinked to the on is used to deide if the rule is eligible for a transformation or not. Thedeision ours befor any attempt to math a subolletion. The semi-olon in the rhs ofthe rule denotes the sequening of two evaluations. As a onsequene, the loal imperativevariable a, initialized to 0 when T is applied, ounts the number of appliations of rule

R and the rule an apply only if a is less than 5. The initial value of a variable loal toa transformation an be overridden when the transformation is applied; for instane theevaluation of T [a = 3](...) enables at most 2 uses of rule R.3.5 Managing the Appliations of a TransformationA transformation T is a funtion like any other funtion and a �rst-lass value. It makespossible to sequene and ompose transformations very easily.The expression T (C) denotes the appliation of one transformation step to the olletion
C. As said above, a transformation step onsists in the parallel appliation of the rules(modulo the rule appliation's features). A transformation step an be easily iterated:

T ['iter = n] (C) denotes the appliation of n transformation steps to C

T ['fixpoint] (C) appliation of the transformation T until a �xpoint is reahed
T ['fixrule] (C) idem but the �xpoint is deteted when no rule appliesIn addition to the standard transformation step strategy, two other appliation modesexist. In the stohasti mode, the hoie of the exlusive rule to apply is made randomly.The priorities of the exlusive rules are then onsidered as the relative probability of theire�etive appliation (when they an apply). In asynhronous mode, only one exlusive ruleis applied in one transformation step.

25

26

4 Examples of MGS ProgramsThe following examples are freely inspired by examples given for Γ, P systems, L systemsand the 81/2 language [Mi96℄.4.1 Maximal ElementThis example is a fundamental one, beause it emphasizes the ability to express in MGSmeaningful transformations able to at on several olletion kinds. The transformation
trans Max = {

x, y/ (x > y) => x ;

x, y/ (x < y) => y ;

}an be used both on a set, a multiset or a sequene. On a set, it omputes the maximalelement in the set; on a sequene it omputes the maximal element(s) in the multiset; andon a sequene, it omputes a sequene omposed only of the maximal element of the initialargument. For instane,
Max ['fixrule]((1, 2, 2, 1, 0, 2, set : ())) = 2, set : ()

Max ['fixrule]((1, 2, 2, 1, 0, 2, bag : ())) = 2, 2, 2, bag : ()

Max ['fixrule]((1, 2, 2, 1, 0, 2, seq : ())) = 2, 2, 2, seq : ()Note that the seond rule of the transformation is neessary only to handle sequenes in thesame manner, beause for sets and multisets, if x, y the we have also y, x, see setion 6.1.4.2 Map and SumThe sum of all elements in a olletion of numbers an be omputed by transformation
trans sum = a, b => a + b ; ;It is easy to ahieve a funtion map with the transformation:
trans MAPF = a => f (a) ; ;This example an be elaborated to be parameterized by the funtion f :
trans MAP [fun = \a.a] = a => fun(a) ; ;

fun map(f,C) = MAP [fun = f](C) ; ;Note that the funtion map is a funtion wrapper that applies one step of transformation
MAP to its argument C. This transformation is parameterized through an optional argumentfun whih takes the funtion to be applied. The default value for funtion fun is the identity,that is: MAP(C) ≡ C. The transformation onsists in substituting a by fun(a). Sine asmany rule instantiations as possible are done in parallel within one step, the only rule of thetransformation is applied to eah element in the olletion.27

4.3 Sorting a SequeneA kind of bubble-sort is immediate:
trans Sort = (x, y / y < x) => y, x;(This is not really bubble-sort beause swapping of elements an take at arbitrary plaes;hene an out-of-order element does not neessarily bubble to the top in the harateristiway.)4.4 Convex HullThe onvex hull of a set P of points in the plane is de�ned to be the smallest onvex polygonontaining them all. It is easy to show that the verties of the onvex hull of P are elementsof P . The program to ompute the onvex hull onsiders a point X and a triple of points

U, V and W and eliminates X if it falls inside the triangle U, V,W .We �rst de�ne a reord Point whih has a �eld x and a �eld y. We de�ne also twovariables named true and false for onveniene (however eah value an be interpreted as aboolean when needed as in the C programming language).
state Point = {x, y}; ;

false := 0; ; true := f̃alse; ;A point X falls inside the points U, V and W i� it exists α, β and γ between 0 and 1 suhthat: αU + βV + γV = X and α + β + γ = 1. This gives a linear system of three equationswith three unknowns α, β and γ wih an be solved using the determinant method. Thisexplains the funtion inside de�ned below. The funtion det omputes a 3× 3 determinant;the funtion hek tests if a value is between 0 and 1; and inside2 is an auxilliary funtionthat does the real work.
fun check(d) = (d >= 1)||(d <= 0); ;

fun det(a, b, c, d, e, f, g, h, i) =

a ∗ (e ∗ i− h ∗ f)− d ∗ (b ∗ i− h ∗ c) + g ∗ (b ∗ f − e ∗ c); ;

fun inside(X,U, V,W) =

inside2 (X,U, V,W, det (U.x, V.x,W.x,U.y, V.y,W.y, 1, 1, 1)); ;

fun inside2 (X,U, V,W, d) =

if d == 0 then false

else if check(det(X.x, V.x,W.x,X.y, V.y,W.y, 1, 1, 1)/d) then false

else if check(det(U.x,X.x,W.x,U.y,X.y,W.y, 1, 1, 1)/d) then false

else if check(det(U.x, V.x,X.x, U.y, V.y,X.y, 1, 1, 1)/d) then false

else true

fi fi fi fi ; ;

28

The funtion inside is used in the guard of the transformation:
trans Convex = X,U, V,W/ inside(X,U, V,W) => U,V,W ; ;To test our program, we ompute the onvex hull of various points lying inside the squaredelimited by (0, 0) and (1, 1), inluding the four orners:
Convex ['fixrule]((

{x = 0, y = 0},
{x = 0.2, y = 0.1},
{x = 0.5, y = 0.7},
{x = 1, y = 0},
{x = 0.1, y = 0.2},
{x = 1, y = 1},
{x = 0.2, y = 0.4},
{x = 0.4, y = 0.6},
{x = 0, y = 1},
set : ()

)); ;omputes the expeted result:
{x = 0, y = 0}, {x = 0, y = 1}, {x = 1, y = 0}, {x = 1, y = 1}, () : set4.5 Eratosthene's Sieve on a SetThe idea is to generate a set with integers from 2 to N (with transformation Generate andSueed) and to replae an x and an y suh that x divides y by x (transformation Eliminate).The results is the set of prime integers.
trans Generate = {x, true} => x, {x + 1, true};

trans Succedd = {x, true} => x;

trans Eliminate = (x, y / y modx = 0) => x;With this program, the expression
Eliminate ['fixrule](Succeed(Generate [N](({2, true}, set : ()))))omputes the primes up to N (and we an turn this expression into a funtion by abstratingon N).4.6 Eratosthene's Sieve on a SequeneThe idea is to re�ne the previous algorithm using a sequene. Eah element i in the sequeneorresponds to the previously omputed ith prime Pi and is represented by a reord {prime =

Pi}. This element an reeive a andidate number n, whih is represented by a reord
29

{prime = Pi, candidate = n}. If the andidate satis�es the test, then the element transformsitself to a reord r = {prime = Pi, ok = n}. If the right neighbor of r is of form {prime =

Pi+1}, then the andidate n skips from r to the right neighbor. When there is no rightneighbor to r, then n is prime and a new element is added at the end of the sequene. The�rst element of the sequene is distinguished and generates the andidates.
trans Eratos = {

Genere1 = n : integer / r̃ight n => n, {prime = n};

Genere2 = n : integer, {prime as x, c̃andidate , õk}

=> n + 1, {prime = x, candidate = n};

Test1 = {prime as x, candidate as y, õk} / y modx = 0 => {prime = x};

Test2 = {prime as x, candidate as y, õk} / y modx <> 0

=> {prime = x, ok = y};

Next = {prime as x1, ok as y}, {prime as x2, õk , c̃andidate}

=> {prime = x1}, {prime = x2, candidate = y};

NextCreate = {prime as x, ok as y} as s / r̃ight s

=> {prime = x}, {prime = y};

}

prime = 7
candidate = 14

prime = 7

prime = 7 prime = 11 prime = 7 prime = 11
ok = 23 candidate = 23

prime = 7 prime = 7
ok = 23candidate = 23

prime = 7 prime = 11 prime = 13 prime = 17
ok = 19

prime = 19
ok = 23 candidate = 23

Test1

Test2

Next

Figure 10: The Eratos program. Some rule instantiations and a fragment of the sequene builtby the transformation Eratos.We have given an expliit name to eah rule. See an illustration on Fig. 10. The ex-pression Eratos[N]((2, seq : ())) exeutes N steps of the Eratosthene's sieve. For instane
Eratos[100]((2, seq : ())) omputes the sequene: 42, {candidate = 42, prime = 2}, {ok =

41, prime = 3}, {prime = 5}, {prime = 7}, {prime = 11}, {prime = 13}, {ok = 37, prime =

17}, {prime = 19}, {prime = 23}, {prime = 29}, {prime = 31}, seq : ().
30

4.7 Maximum Segment SumConsider the problem of �nding the segment of maximal sum in a sequene of numbers. Forinstane, in sequene <1, 2, -3, 2, 2, -1> the maximum segment sum is the segment <2, 2>.This optimization problem an be solved by dynamial programming. The orrespondingalgorithm is easely stated in MGS.We �rst transform a sequene of numbers into a sequene of reords. A reord at position
p has a �eld val whih reords the number at position p in the initial sequene, a �eld sumwhih holds the sum of the urrent omputed maximal segment endings at position p anda �eld named indices whih ontains the positions of the elements of the urrent segmentending at p. Initially, the urrent segment that ends at position p also begins at position p.Thus:

trans init [p = 0] = (x/ record(x))

=> (p := p + 1; {val = x, sum = x, indices = (p, set : ())})For instane, init(<21,−5, 7>) omputes <{val = 21, sum = 21, indices = {1}}, {val = −5, sum =

−5, indices = {2}}, {val = 7, sum = 7, indices = {3}}> .Then, we an ombine a segment ending at position p and a segment at position p + 1 togives a segment at position p + 1 if this inrease the loal sore:
trans all_max_sum =

((x, y)/(y.sum < (x.sum + y.val)))

=> x, y + {val = y.val, sum = x.sum + y.val, indices = x.indices@y.indices}; ;This transformation must be iterated until �xpoint. Then, the maximal segment sum an beextrated:
trans max_sum = {

x, y/x.sum > y.sum => x;

x, y/x.sum < y.sum => y;

}; ;The whole proess an be sumarized in a funtion:
fun mss(C) = max_sum['fixrule](all_max_sum['fixrule](init(C))); ;4.8 TokenizationThe tokenization problem an be stated as follows: it is required to proess a sequene ofletters to obtain the multiset of words onstituting the sequene. A word is a sequene ofletters without white spae.The solution, a two transformations long MGS program, relies on a nested olletionsstruture. On the top level, we have a multiset and the elements of this multiset are sequeneswhih �nally must be without white spae. 31

We �rst de�nes two new types:
collection Word = seq; ;

state Split = {before , after}; ;The type Word is just a distinguished sequene type used to representes the words9. Thereord Split will be used to reord the two parts of a sequene splitted when a white spaeis deteted. The rule:
trans CutSeq = (x/ x ! = ” ”) + as X, (y/ y == ” ”), (z + as Z)

=> {before = X, after = Z}; ;applied on a sequene, gives a new sequene. If there is a white spae ” ” in the sequene, thethe pattern � (x/ x ! = ” ”) + as X � �lters, in a subsequene named X, all the non-whitespae letters until the �rst ourene of a white spae binded to y. Then Z binds to the restof the sequene. The result omputed by {before = X, after = Z} is a sequene ontainingonly one element, a reord of type Split. If there is no white spae on the sequene, the ruledoes not apply and the transformation is the identityReall that a transformation ats by applying rules on subsequenes and the results aregathered in a sequene. This is why the results of applying CutSeq is always a sequene,even if the entire sequene is mathed by the rule10.The seond transformation apply CutSeq on the elements of a multiset and extrat theresult of a split from the englobing sequene:
trans Cut = {

x/Split(hd x) => (hd x).before , (hdx).after , bag : ();

x => CutSeq(x);

}The �rst rule of this transformation is applied if the �rst element of a sequene is a Split. Inthis ase, the two �elds of the Split are extrated and onstitute the elements that are addedinto the multiset in plae of the mathed sequene. The seond rule apply the transformationCutSeq to an element. It is important to give the two rules in this order. As a matter offat, the seond rule an always apply (beause there is no guard, the pattern x mathes anyelement in the multiset). But we want to apply this rule only if the element is not a split.For example, see Fig. 11, the expression (the transformation Cut applied until �xpointto a multiset of one element, this element being a sequene Word):
Cut ['fixpoint](((”a”, ”b”, ”c”, ” ”, ”d”, ”e”, ” ”, ”f”, ”g”, ”h”,Word : ()), bag : ())); ;9Instead of letters, we use here strings (written between double quotes) to represent the elements of thewords, beause the urrent interpreter does not o�er letters as a basi type.10We are devising mehanisms to ease the � dissolving � of a nested olletion, in a manner analog of thedissolve operator used in P systems. Here we use a rule in the transformation Cut.

32

evaluates to
(
”a”, ”b”, ”c”, () :Word

)
,

(
”d”, ”e”, () :Word

)
,

(
”f”, ”g”, ”h”, () :Word

)
, () :bagthat is, a bag of three elements, eah element being a word without white spae. See �gure 11.

ba c hgfed

ba c

ed hgfFigure 11: Tokenisation of a sequene of letters4.9 Token moving on a RingThe problem is just to propagate a token on a ring. The idea is to use a rule
(x/x == 1), (y/y == 0) => 0, 1;to say that the token � 1 � propagates in a medium of 0. However, the topology of a ring isnot diretly aessible as a olletion kind (not yet). But it an be emulated by a sequeneand by managing expliitly what ours for the begin and the end of the sequene. Insteadof written one rule, we have to write three rules. The rule for the �rst element looks like:
z/(z == 0) & l̃eft z & . . . => 1;where the ondition l̃eft z spei�es that z is the �rst element in the sequene (it has noelement to its left) and the ondition z == 0 ensure that it is not oupied by a token. Itremains to hek that the last element of the sequene is oupied by a one.For, we have to refer to the global olletion on whih the transformation is ating. Thisis possible, using simply an additional parameter of the transformation. When we apply thetransformation, we arrange to pass the olletion both as the argument and as the value of theadditional parameter of the transformation (using a wrapper). The orresponding programis:
trans Tore [self] = {

(x/x == 1), (y/y == 0) => 0, 1;

y/(y == 1) & r̃ight y & (0 == hd(self)) => 0;

z/(z == 0) & l̃eft z & (1 == last(self)) => 1;

}; ;

fun tore(t) = Tore[self = t](t); ;The operators hd and last give the �rst and the last element in a sequene. The funtiontore is the wrapper of the transformation Tore. An n-times iteration of the transformation is33

then simply obtained by iterating the funtion tore n-times, whih is realized with the samesyntax as the iteration of a transformation : tore [n](. . .). The 6th �rst iterations startingfrom a ring with 5 element and just one token, give:
0, 0, 1, 0, 0

0, 0, 0, 1, 0

0, 0, 0, 0, 1

1, 0, 0, 0, 0

0, 1, 0, 0, 0

0, 0, 1, 0, 0This program gives an example of the smooth interplay between transformations and fun-tions, and the use of additional arguments in a transformation.Moving a token on a ring is not very interesting. Instead of moving one token, one andi�use two morphogenes that, in addition, reat together. This proess is skethed in thenext setion. The previous idea is used to di�use on a ring emulated on a sequene. Theresults of the MGS program are output in a Mathematia readable form, for the purpose ofvisualization. The result is plotted in �gure 12. We do not give the orresponding MGSode beause it simply ombines the previous idea with the Turing di�usion-reation proessdesribed below. For information, the MGS ode takes 75 lines, inluding 35 lines dediatedto format the output for Mathematia while an hand-oded C program takes 70 lines to onlyompute the di�usion-reation proess.

Figure 12: Example of a Turing di�usion-reation proess on a ring. Eah ell of the ringis rendered by a slie of the torus. The diameter of the slie is proportional to the b morphogene(f. text of setion 4.10). The results omputed by the MGS program are written in a �le later readby Mathematia. This �le ontains both the omputed data and a Mathematia program used toompute the oordinate of the torus and to render the 3D objets. This �gure plots a gif apture ofthe graphis rendered by Mathematia when reading the MGS produed �le.
34

4.10 Morphogenesis Triggered by a Turing Di�usion-Reation ProessAlan Turing proposed a model of hemial reation oupled with a di�usion proessus in ellsto explain patterns formation. The system of di�erential equations [BL74℄ is:
dar/dt = 1/16(16 − arbr) + (ar+1 − 2ar + ar−1)

dbr/dt = 1/16(16 − br − β) + (br+1 − 2br + br−1)where a and b are two hemial reatives that di�use on a disrete segment of ells indexed by
r. This model mixes a ontinuous phenomena (the hemial reation in time) and a disretedi�usion proess. In MGS we retrive these equations, three times, to handle the ell at the twoends of the segment (rule evol_left and evol_right) and the ells with two neighboors (rule
evol).In addition, we omplexify this proessus by splitting one ell in two if the level of themorphogen b is greater than a given level (rule Split). This proess does not orrespond toany real biosystems, see however [HP96℄.The orrresponding program starts by a transformation used to generate the initial se-quene of ells.

trans init =

x => {

a = 3.5 + random(1.0) − 0.5,

b = 4.0,

beta = 12.0 + random(0.05 ∗ 2.0) − 0.05,

size = 16

};

rsp := 1.0/16.0; ;

diff1 := 0.25; ;

diff2 := 0.0625; ;

NbCell := 18; ;

segment0 := init[1](iota(NbCell, () : seq)); ;The init transformation is used to generate the initial sequene of ells segment0. Appliedone times to a sequene of n arbitrary elements, it generates a sequene of reords. The �eld
a and b of the reord orresponds to the morphogens. The �eld beta is an auxilliary variableof the di�usion-reation proess: it orresponds to a onstant with some noise. The �eld sizeis used for the 3D output, see �gure 13 and annex B. The expression iota(NbCell, () : seq)build a sequene made of the integers from 0 to NbCell.The real omputation takes plae in the Turing transformation. One rule is used to splita ell that reah the adequate level of morphogen b and three other rules are used for thereation-di�usion proess. The funtions da and db omputes the inreases in morphogen a

35

and b respetively.
fun da(a, b, la, ra) = rsp ∗ (16.0 − a ∗ b) + diff1 ∗ (la + ra− 2.0 ∗ a); ;

fun db(a, b, beta, lb, rb) = rsp ∗ (a ∗ b− b− beta) + diff2 ∗ (lb + rb− 2.0 ∗ b); ;

trans Turing = {

Split =

(x/x.b > 8) =>

{a = x.a/2, b = x.b/2, beta = x.beta, size = x.size/2},

{a = x.a/2, b = x.b/2, beta = x.beta, size = x.size− x.size/2};

evol =

(x/(left x)&(right x))+=>

{a = x.a + da(x.a, x.b, (left x).a, (right x).a),

b = Max(0.0, x.b + db(x.a, x.b, x.beta, (left x).b, (right x).b))};

evol_right =

(x/̃ left x)+=>

{a = x.a + da(x.a, x.b, 0, (right x).a),

b = Max(0.0, x.b + db(x.a, x.b, x.beta, 0, (right x).b))};

evol_left =

(x/̃ right x)+=>

{a = x.a + da(x.a, x.b, (left x).a, 0),

b = Max(0.0, x.b + db(x.a, x.b, x.beta, (left x).b, 0))};

}; ;The rest of the ode is used to trigger the omputation and to output the results. The outputis done in a dediated language used to visualize 3D senes. The result is plotted in �gure 13.The funtions showBarre, pre_show and post_show are detailed in annex B. This odeis very short and easy to program, beause the language used to produe the sene is veryexpressive.
fun showBarre(barre, t, tmax) = . . . ; ;

fun pre_show() = . . . ; ;

fun post_show(n, c) = . . . ; ;

fun evol(barre, t, tmax) =
(

showBarre(barre, t, tmax);

if (t < tmax) then evol(Turing[iter = 1](barre), t + 1, tmax)

else barre fi

);

fun evolve(n) = (pre_show(); evol(segment0, 0, n); post_show(n,NbCell)); ;

36

Figure 13: Example of a Turing di�usion-reation proess oupled with a morphogenesis.Eah ell is rendered by a blok whose height is proportional to the b morphogene (f. text). Whena ell is splitted in two, the width of the two daughter ells is divided by two, suh that ells with aommon anestor are in the same parallel line (the axis direted toward the reader, whih representsthe passing of time). This plot orresponds to 180 time step evolution of an initial sequene of 18ells.

37

38

5 Topologial Colletions and their TransformationsAt this point of our presentation, the interested reader may objet that the olletion kindsin MGS are not related and that their presene in the same language is more a matter ofjuxtaposition rather than an integration. In the urrent prototypes (april 2001), it is truethat the implementation of the olletion kinds and of the pattern-mathing algorithms aread-ho. And there is no way to build new olletion kinds at user level (beside subtypingf. setion 3.2.3).However, we show in this setion that a formal generi framework an be developped.This formal framework relies on mathematial notions developped in ombinatorial algebraitopology. The algebrai and ombinatorial de�nition of the involved onepts makes thempartiularly suited for a omputer implementation and justify our laims in the unifying andgeneri nature of the MGS approah, far beyond monoidal olletion. The development of anew version of the MGS prototypes based on this formalization has starded, see 7.The reader not interested in the formal development may skip this setion.5.1 Organization of this setionThe de�nitions and results given below are standard in ombinatorial algebrai topology, andhave been gathered from the referenes [Ale82, Mun84, HY88, Sha90, Hen94, Axe98, Ber00℄.Annex C reviews some of the algebrai strutures used below.The algebrai apparatus used here may appear very heavy with respet to our needs.However, the de�nitions introdued here are only the �rst elementary notions introdued forstarting homology and ohomology theory.We have tried to give an explanatory introdution of these de�nitions, following a stepby step presentation, with some insights and intuitions talking to a omputer sientist. Thepresentation is then not very straightforward and we have avoided a muh more brutal butonise presentation. This explains the length of this hapter and the mix between informalonsiderations and the algebrai devies.The organisation of this hapter an be skethed as follow:1. The basi objets used to onstrut the spae underlying a topologial olletion, ab-strat omplexes, are introdued in setion 5.2 and their neigborhood relationships arede�ned in setion 5.3.2. The previous struture is simple and natural but has some drawbaks when it omes tospeak about boundary, or part of a spae. The struture of hain group, that overomesthese limitation, is then presented in setion 5.4. This struture is used to assoiate avalue to eah basi objet to take into aount its neigborhood (setion 5.5).3. We need to relate the notion of abstrat omplex and hain group together. It impliesthat only hain groups with a spei� form interest us. This is explained in setion 5.5.A fundamental example is presented in the next setion (setion 5.6). The struture ofthese group are more losely investigated in setion 5.7.39

4. There is an algebrai notion of duality that an be used to extend the notion of haingroup. This extension generalizes the notion of hain and also gives a support tothe notion of oboundary : two elements an be neighboor not only beause they sharesomething, but also beause they are shared by something. The geometri interpretationis then skethed (setion 5.8).5. Setion 5.9 shows that the previous notions an be used not only to render the neigh-borhood relationships, but also to assoiate a value with the � plaes � of a spae.6. We then take all this de�nitions together and put some additional onstraints to de�nethe type of a topologial olletion (setion 5.10).7. Various kind of transformations of suh objets are spei�ed in the following setion(setion 5.11).8. The previous de�nitions are illustrated in an ad-ho maner on the spei� example ofgrids (setion 5.12).9. We summarize this presentation in the last setion.5.2 Cellular Spaes and Combinatorial Struture of ComplexesTopology is often presented as the geometry of rubber sheet: the properties of a �gure thatremain true under twisting, pulling, strething, ..., any deformation of this sort providedthe rubber an withstand it without ripping or tearing. Notions like ontinuity, limit, openset, et., are developped in point set topology and are pertaining analysis and alulus.On the other hand, ombinatorial topology has developed a strong algebrai �avor. Theombinatorial method is used to onstrut ompliated �gures from simple ones and to dedueproperties of the ompliated from the simple. Here we want to speak about a spae madeof plaes and the neighborhood of a plae in this spae. The set of plaes is disrete and weare not really interested by the � metri � aspet of this spae. It does not matter if a plaeis � far � or � near � another plae. What does matter is the onnetion between plaes andthe deomposition of plaes into subplaes. So, the ombinatorial approah suits partiularlywell our needs. This sort of spae, with its ombinatorial struture, will be the arrier of atopologial olletion.It is onvenient to desribe this spae as build from basi blos. This basi blos arealled k-ells. Beware that we use the same word � ell � for the biologial objet and thetopologial notion. In this hapter, we only refer to the topologial notion. The fat that atopologial 3-ell an be used to represent a biologial ell in a simulation may be onfusing.A k-ell is an homeomorphi image of an open balls in Rk. In other word, a k-ell c is theimage of the set D
k = {x ∈ R

k, ||x|| < 1} by a ontinuous bijetion h, suh that h−1 is alsoontinuous. However, the preise nature of the ell c is not stressed in a purely ombinatorialapproah until no link is made with point set topology notion. Here, we need only to gradthe ells by their dimension and to fous on the onnetion of ells.A olletion of ells that are �tted together in an appropriate way form larger struturesalled omplexes. Examples of omplexes are given in Fig. 14 and 15. If an edge e is a side40

annulus

book

torus (doughnut)

annulus
double

moebius strip

sphere

Figure 14: Examples of omplex build from polygons. The examples of this �gure imply ellsof dimension less than 2. A polygon is a 2-ell where a �nite number of points on the boundary arehosen as verties. The setion of the boundary in between verties are the edges. A polygon is alleda n-gon where n is the number of verties. Thus the annulus there is omposed of four 4-gons whilethe double annulus is omposed of three 4-gons and four 5-gons.

4

3

2

1

B

41
h

g

i
j CA

e

f

gh i fe j

A C

1

B

0

32Figure 15: An abstrat omplex. The shema in the right hand side gives the Hasse diagram ofthe inidene relation of the omplex in the left hand side. Faes are denoted by apital letters A,B and C. Edges are denoted by small letters and verties by numbers. For instane, the fae B isbounded by two edges i and j whih are themselves bounded by verties 2 and 3. This example showsalso that an abstrat omplex is generally not a lattie : there is for instane no least upper bound foredges e and f: both faes A and C are inomparable suessors of e and f.
41

of a fae f , we say that e and f are inident and we write e < f . The relation with the pointset notion of a ell as an open ball, is the following. If a ell c is part of the losure of a ell
c′, we say that c is inident to c′ and we write c < c′. However, the inidene relation is anorder, and that's all we are interested in.Definition 1 (Bounded Poset (P,<)). A poset (P,<) is a set P with an antisymmetriand transitive relation < (the partial order). A poset is bounded if there are a unique minimaland maximal element 0 and 1. Let x, y ∈ P suh that x < y and there is no z suh that
x < z and z < y. Then we write x ≺ y and we say that x is a predeessor of y or that y is asuessor of x.Definition 2 (Abstrat Complex). An abstrat omplex K is a bounded poset with afuntion dim : K → Z de�ned for the elements e ∈ K − {0,1} suh that e < e′ implies
dim e < dim e′ and e ≺ e′ implies dim e′ = 1 + dim e. The set Kp = {e | e ∈ K,dim e = p} arethe p-ells of K. A 0-ell is also alled a vertex, a 1-ell is an edge and a 2-ell is a fae. Thedimension dim S of a subset S ⊂ K is the biggest of the dimensions of the elements of S ifit exists.The minimal and maximal element in the abstrat omplex de�nition will not be usedat all here (they are useful to make some onstrutions more smoth). A graph is simply anabstrat omplex of dimension 1: the verties are the nodes of the graph and 1-simplies arethe edges, with the additional ondition that there is exatly two predeessors for eah edge.Note that using an abstrat omplex, one annot make a di�erene between a ylinder anda moebius strip beause they give the same poset, see �gure 16. These de�nitions are purelyombinatorial and more speialized versions toward a geometri representation are usuallyused; we an ite simpliial omplex, singular omplex, semi-simpliial set, polytope,ellular omplex, CW-omplex, et. They make more onstraints in the �tting of ells intoa omplex.5.3 Star, Link and ConnetionsGiven a poset and its partial order <, we de�ne the derived ≤ and � relationships. Wede�nes now some operations on subsets of omplexes. For a subset S ⊆ P , the smallest poset
S is its losure.Definition 3 (Subomplex, Star and Shape). Let (K, <), an abstrat omplex and S ⊆ Ka subset of K. Then the set S = {y | y ∈ K, y ≤ x ∈ S} with the relation < is thesubomplex generated by S. It is alled the losure of S. The star Stx of a ell x ∈ K is
Stx = {y | x ≤ y ∈ K}. We de�ne the star of a subset S ⊆ K to be StS =

⋃
x∈S Stx and thelosed star is StS = StS . An element x is above a set S ⊂ K i� x ∈ S or if the elements ofthe set {y | y ≺ x} are all above S. The shape Shape(S) of a subset S ⊂ K is the set of theelements above S. These notions are illustrated in �gure 17 and 18.There is two ways for a ell x to be onneted with a ell y: beause they share a ommonboundary or beause they are both boundaries of a � bigger � ell. Then, it appears that the� neighbors � of a ell x are the ells in Stx. 42

BA

a

b

4

3
2

1

6

5C

c

Bb

4

A
2

3

6

C1

c

5
21 3 4 5 6

a cb

A B C

aFigure 16: An abstrat omplex annot handle orientation. For example, the moebius strip onthe left gives the same poset as the ylinder on the right (they are both omposed of 3 faes, 3 edgesand 6 verties).

Figure 17: Examples of star and link. The subset S is omposed of 4 edges and 3 verties. Onthe top we have S pitured on the omplex K, then StS and St S. On the bottom line we have S,
StS and the link of s: LkS = StS \ St S whih onsists of two omponents of 4 edges and 5 vertieseah (the operator r � denotes the asymmetri set di�erene, i.e. A r B = {x | x ∈ A, x 6∈ B}).

b

c

a

d

e

S

StS

Shape(S)Figure 18: Connetion and shape of a set. Left �gure. We �gure symbolially a poset K by atriangle. The oloured triangle below element a is the subomplex a generated by a. It is also alledthe one below a. An element x is in the one below y i� x ≤ y. The set {a, b, c, d, e} is onnetedbeause elements are onneted two by two. Fo example, a and b are onneted beause a ≤ b, idemfor c and b. The elements c and e are onneted beause d ≤ c and d ≤ e. Let A = a, C = c and
E = e be the losure of {a}, {c} and {e} respetively. Then the set A ∪C ∪E ∪ {b} is also onnetedbeause a losure of a onneted set is onneted. Right �gure. The set S onsists of three internalverties of a line graph. We have �gured St(S) and Shape(S).

43

Definition 4 (Connetions). Two ells x and y of an abstrat omplex K are onneted,and we write x , y, if x ∩ y 6= ∅ or if Stx ∩ St y 6= ∅. Given a set S ⊆ K, we de�ne (,\S) asthe restrition of , on S: (,\S) = ,∩(S × S). Let (,\S)∗ be the transitive losure of thisrelation. A subset S of K is onneted if (,\S)∗ has only one equivalene lass.Considering an in�nite omplex may be useful, for instane to represent an unboundedgrid. However, eah element (vertex or edge) in this grid is onneted to only a �nite set ofother elements. Then, we say that the grid is loally �nite.Definition 5 (Loally �nite omplex). A omplex K is losure-�nite if for all ell x ∈ K,
x is a �nite set. It is star-�nite if Stx is a �nite set for all x in K. A omplex whih is bothlosure-�nite and star-�nite, is said to be loally �nite.5.4 Chain ComplexFigure 16 shows that the poset struture alone is not enough to represent the onnetion ofells. The problem an be splitted into two subproblems:1. how a ell deomposes into subells;2. how a ell lies in the omplex.Obviously these problems are related. We will takle the �rst question in this setion. Weshall examine the seond in setion 5.8.A ell is not ompletely desribed by the simple set of its predeessors. One must representalso some organisation of these predeessors: for example an orientation, or a ount if somesubells are identi�ed (see the piture at the right on �gure 22). This organisation of the setof the predeessors is represented by the notion of hain : a hain is a � strutured set � of ells.This struture is spei�ed through an abelian group struture and a boundary operator. Theabelian group struture (the annex C gives a quik review of this notion) is used to desribethe gluing of two ells using the group operation (written additively). The boundary operatorgives the hain that desribes the boundary of a ell, and by extension, the boundary of anyhain.Using an abelian group operation to represent the � gluing � c of two ells x and y meansthat we an write c = x+y or c = y+x: the order of the gluing does not matter. The neutralelement 0 orresponds to the empty set. And if we add a ell x to a part c, one must be ableto � detah � the ell x from c latter. This justify the use of a group struture for the set ofhains. Furthermore, one of the main objetive of the theory is to ompute the boundaryof an arbitrary part of a spae, from the boudary de�ned for an � isolated � ell. Thus, it isnatural to require the boundary operator ∂ to be an homomorphism: ∂(x+ y) = ∂(x)+∂(y).These onsiderations motivate the following de�nition.Definition 6 (Chain Complex). A hain omplex is a sequene C = (Cp, ∂p)p∈Z of abeliangroups Cp and onneting homomorphism ∂p : Cp → Cp−1, alled boundary maps.The group Cp is alled the p-hain group and an element c of Cp is alled a p-hain. Cprepresents all the way to glue p-ells together. Sometimes we use a subsript p to indiate that

44

a hain c is a p-hain: cp. In the opposite, for onveniene in notation, we shall sometimesdelete the dimensional subsript p on the boundary operator ∂p, and rely on the ontext tomake lear whih of these operators is intended.An abelian group Cp is trivial when its only p-hain is 0 (the element zero of the group).It this ase we write Cp = 0. A �nite dimensional hain omplex C is suh that the Cp aretrivial exept for at most a �nite number of p. Most often, Cp is the trivial group for p < 0and in this ase we say that C is a non-negative hain omplex. If Cp is a free abelian groupfor eah p, then C is alled a free hain omplex. The hain omplex is said homologial oralled a graded di�erential group with operator ∂, i� for all p and for all c ∈ Cp+1,
(∂p ◦ ∂p+1)(c) = 0This ondition re�ets the intuitive property that � the border of something has no borderitself �. Figure 19 gives an example of a non-homologial hain omplex. Intuitively, the lossof homology omes from identifying parts of the boundary of a ell.5.5 Chain Group with Coe�ient in an Arbitrary Abelian GroupIn the two examples of the �gure 19, the groups Cp are built from the p-ells in Kp by sayingthat Cp is the abelian group generated by the element of Kp subjet to the equations c+c = 0.In other word, every element in Cp is a formal sum of elements in Kp and any element c in

Cp is its own inverse. Example of hains are e, e + f, f + e + g, et. So, the relation betweena hain and a ell is lear in this ase: the hain redued to only one element x, orrespondsto a p-ell x.
e1 2

s

e

1 2

s

e
e

s

4
g

3

f

21

h

h

s

3

g f

2

s’

1 4Figure 19: Examples of a non-homologial and an homologial hain omplex. The two�gures represent two possible onstrutions of a sphere. The assoiated omplex K is de�ned on theright. The verties are nammed by an itali number (1 , 2 , ...), edges are identi�ed by a letter in thebegining of the alphabet (e, f , ...) and the faes are alled s and s′. A p-hain is simply a � sum�of p-ells, like e + f for instane. In addition, we suppose that the hain groups Cp are idemgroups,that is c + c = 0 for any p-hain. Furthermore, we de�ne ∂(x) =
∑

y≺x
y for all p-ell x ∈ K and weextend the operator ∂ by linearity, that is ∂(x + y) = ∂x + ∂y. The omplex pitured to the left isa non-homologial omplex. Fae s is folded and its boundary onsists only of one edge e (imaginethe border of a disk pathologially stithed on itself to obtain a sphere). The verties 1 and 2 arethe boundary of this edge. This omplex is non-homologial beause ∂∂(s) = ∂(e) = (1 + 2) 6= 0.This has to be ompared with the omplex pitured at the right hand-side whih is homologial. Forinstane ∂∂(s) = ∂(f + g + e + h) = (1 + 3) + (2 + 4) + (1 + 2) + (4 + 3) = 0 (reall that x + x = 0in an idemgroup). And the result is the same for s′ or any other k-ell.

45

However, the desription of the struture of a spae by a hain omplex is rather abstratand we have in general no expliit notion of the ells in the desription of a hain omplex.How an we relate an abstrat omplex K and a hain omplex C?The idea is that some elements in Cp, alled elementary hains, must represent a unique
p-ell x together with a oe�ient g whih represents some information about the � gluing �(orientation, ount, et.) of x. Let G be the set of all possible g. Then an elementary hainan be viewed as a pair (g, x). A typial element in Cp is a sum of suh elementary hainsand Cp must have the struture of a group. Consider the sum of two elementary hains onthe same ell x: c = (g, x) + (g′, x). The result must be an elementary hain on the same
p-ell x, so c = (g′′, x). The oe�ient g′′ must represent the ontribution of x oming froma ontribution g and a ontribution g′. We write g′′ = g + g′ and is this easy to see that if
Cp has an abelian group struture, then G must have an abelian group struture too. Andonversely. If we write an elementary hain (g, x) as the formal produt gx of an element ofthe oe�ient group G by an elementary p-ell, then a typial hain cp an be written

cp =
∑

x∈Kp

gxxwhere gx is the oe�ient that desribe the ontribution of the p-ell x. But one man think
cp has a funtion that desribes the ontribution of x, that is, cp : Kp → G with cp(x) = gx.Historially, people have �rst onsidered hains with a �nite number of ontributing p-ells,so in the previous sum we onsider that only a �nite number of gx are nonzero. Hene thede�nition.Definition 7 (Chain Group with Coe�ient in an abelian group G).Let K an abstrat omplex (�nite or not), and let G denotes an arbitrary abelian groupwritten additively. The neutral element of G is written 0. The set Cp(K, G) of p-hain onthe omplex K with oe�ient in G is the set of total funtions cp from the set Kp to Gthat are zero almost everywhere, that is, cp(x) = 0 for all but a �nite number of p-ells of K.The operation used to turn the set of k-hains into a group is the addition of funtions ifone thinks of them as funtion, or the omponentwise addition if one thinks of them as sums.Integral hains are just hains with integer oe�ients Cp(K, Z). The integral hain group,of speial importane, is abbreviated Cp(K). The justi�ation of the sum notation, with theprodut of a p-ell and a oe�ient in G wille be delayed until setion 5.7.Carrier of a Chain. Let cp = α1x1 + · · · + αnxn be a hain of C(K, G). Then αi ∈ Gand we suppose also that αi 6= 0 for all i. Then the arrier of cp is the set of p-ells with anonzero oe�ient in the ohain: |cp| = {x1, . . . , xn, . . . }.Compatible Boundary Homomorphisms. We have de�ned the boundary maps of ahain omplex C = (Cp, ∂p) as a sequene of homomorphisms satisfying the signature:

C0
∂1←−− C1

∂2←−− C2
∂3←−− · · ·

46

Saying that ∂p is an homomorphism means that we an de�ne ∂p on elementary hains andextend the boundary operator on any hains by linearity : ∂(c+ c′) = ∂c+∂c′ In other word,� the boundary of a sum of elements is the sum of the boundaries of the elements �.The boundary operators embeed more information than the poset struture alone. Forexample, suppose we work with integral hain groups and we have to desribe the moebiusband in �gure 16. Then the predeessor of C are a and c and we have ∂C = c − a. Theedge a is ounted negatively to aount for an oposite orientation. For the ylinder, we have
∂C = c + a: the boundary operators makes a di�erene between two objets that are notdistinguished with the poset struture alone.However, when we use the hain groups Cp(K, G) in relation with an abstrat omplex
K, we need to relate the onnetion struture desribed by the abstrat omplex K and theonnetion desribed by ∂.Definition 8 (Compatible Boundaries). Let (Cp(K, G), ∂p) be a hain omplex assoiatedwith an abstrat omplex (K, <). Then, the boundary maps ∂p are said ompatible with Ki� for all x ∈ Kp, and for all g ∈ G, g 6= 0, |∂gx| = {y | y ≺K x}.The elements with nonzero oe�ient in ∂gx are exatly the predeessors of x. Thisondition ensure the oherene between the poset struture of the abstrat omplex K andthe boundary operations. In the previous example, the ompatibility ondition is respetedbeause |∂C| = {a, c} both for the moebius band and the ylinder.Basi Assumption. We are only interested in the ase where the abelian groups Cp arerelated to an abstrat omplex K. Every hain omplex (Cp, ∂p)p we onsider heneforth issuh that Cp = Cp(K, G) and the boundary maps ∂p are ompatible with (K, <). We write
C(K, G, ∂) for suh hain omplex.5.6 Example of the C(K, Z/2, ∂) Chain ComplexReturning bak to the examples in �gure 19, now we may speify rigorously the group Cp asthe funtions from Kp to Z/2 the group of integers modulo 2 (f. annex C). A hain c = e+forresponds to the funtion c de�ned by c(e) = c(f) = 1 and c(x) = 0 for x 6= e and x 6= f .This hain an also be written c = 1.e + 1.f + 0.g + 0.h + It is ustomary not to writethe p-ells with a zero oe�ient (in aordane with the additive notation). Thus we have
c = 1.e + 1.f (or more ambiguously c = e + f).Representation of the Subsets of K by Cp(K, Z/2). Using Z/2 as the hain oe�ientsenables the representation of the presene, cp(x) = 1, or the absene, cp(x) = 0, of a p-ell xin a hain cp. A hain of C(K, Z/2) is then simply the harateristi funtion of a subset of
K. But the group struture gives some additional apabilities.The elements of this group are {0, 1} and 0 + 0 = 1 + 1 = 0 and 0 + 1 = 1. The groupswhere x + x = 0 for all x are quali�ed as idemgroups. So Z/2 is an idemgroup as well as
C(K, Z/2). Suppose c1 and c2 are given k-hains with oe�ient in Z/2. Then, c1 + c2 isde�ned to be the k-hain made up of the k-ells of c1 or c2 but not in both. In other words,47

the + operation between hains orresponds to the � symmetri set di�erene �. Similarly,
c1 + c2 + c3 onsists of thoses k-ells ontained in just one or all three of the hains c1, c2and c3. More generally, the sums of n k-hains turn out to onsist of those ells ontained inan odd number of the hain c1, .., cn. The zero k-hain (the unique element in Ck suh that
c + 0 = 0 + c = c for all k-hain c) is the empty hain denoted 0 and ontaining no k-ell.Computation of a Boundary in C(K, Z/2). We have shown that the use of oe�ientsin Z/2 enables the representation of an arbitrary subset. To turn these hain groups into ahain omplex, we have to de�ne the boundary operators ∂p. We just de�ne the boundary ofa single p-ell x as the hain that represents the predeessors of x:

∂p(x) =
∑

y∈Kp−1, y≺x

yand we extends this de�nition by linearity on a p-hain c =
∑

x c(x)x:
∂(c) =

∑
c(x)∂(x) =

∑

x

∑

y≺x

c(x) yBy de�nition, these boundary operators are homomorphisms and ompatible with the posetstruture of the abstrat omplex K (there is no other possible de�nition for ∂). Let us seethe e�et of this boundary operator on suh hains.Suppose that the hain c ∈ Cp(K, Z/2) is omposed of two k-ells s′ and s′; this is denotedby c = s + s′. Suppose than s and s′ share only one ell d ∈ Kp−1, see Fig. 20. Then d is notin the border of s beause s and s′ are glued along d: d is an interior ell. But d is in theboundary of s and in the boundary of s′. Let ∂ps = d +
∑

x′
j and ∂ps

′ = d +
∑

x′′
k. Thenwe must have: d +

∑
x′

j + d +
∑

x′′
k =

∑
x′

j +
∑

x′′
k whih is automatially ahieved beause

d + d = 0.
s s’

a

b

c
e

f
a

b

c
e

f
+

a

b

c
e

f
=d d d

∂

Figure 20: Example of the appliation of the boundary operator on a C(K, Z/2) hain.
∂(s + s′) = ∂s + ∂s′ = (a + b + c + d) + (d + e + f) = a + b + c + e + f beause d + d = 0.All interior ells, i.e. ells that have two suessors, will anel out and only the geometriboundary ells of s will remain. This explain the sense in whih the geometri boundary of aset of points is a speial ase of the more general topologial boundary operator de�ned here.An Algebra for Counting the Cells in a Boundary. Note that working with Z/2oe�ients avoids the problem of the orientation of eah ell and enounters the problempointed in Fig. 16: orientation is not taken into aount, as for abstrat omplex. This

48

problem an be handled using integer oe�ients Z that enables the preise ounting of eahell, together with its orientation.The group Z/2 provides an algebra for handling ertain simple ounting operations whereonly the evenness or the oddness of the results is important. The integral hain group
C(K) = C(K, Z) provides an algebra for handling these ounting operations without thepeuliar restrition to evenness and oddness, see fure 21. The hain 2x + 1y − 3z ounts theell x twie, the ell y one and the ell z minus three times. And another abelian oe�ientgroup G provides another kind of ounting algebra.

a

c
e

f

b

g

h

6

4

5

3
7

2
1

i

vu

w
j

8
s

2

s’

c 3

e

d
4a

1 d
b

Figure 21: Examples of two oriented omplexes. The two �gures represents two 2-hains withintegral oe�ient. The ells used in the left omplex are simpliial ells, that is, a p-ell is the onvexhull of p + 1 points in R
n. The sign of the oe�ient is used to take into aount the orientation ofedges and faes. For example, ∂d = 4− 2 and ∂s = a + b− c. Orientation an be used to anel out aoe�ient: ∂(s+s′) = (a+b−c)+(d−e−b) = a+d−e−c. The ells in the right omplex are polygonalells. They are oriented by giving an order between verties. Faes are oriented positively from thelow vertex to the high vertex. This example shows that the absolute value of the oe�ient is used toount the number of time a ell is used: ∂(v+w) = (j−f−e+d)+(g−h−i+d) = j−f−e+g−h−i+2d.5.7 The Struture of the Chain Group with Coe�ientWe want to haraterize further the hain groups with oe�ient. We �rst de�ne the notionof free abelian group and review some useful results. Then we show that the integral haingroup is free. We show that any hain group with oe�ient in G has the struture of a sumof opies of G Finally, we give a representation of Cp(K, G) in terms of Cp(K).Construting a Free Abelian Group From a Basis. An abelian group G is free if ithas a basis, that is, if there is a family {gα}α∈J suh that eah g ∈ G an be written uniquelyas a sum g =

∑
nαgα where nα ∈ Z. If G is free and has a �nite basis onsisting in nelements, then it is easy to see that every basis for G onsists of preisely n elements (thisnumber is alled the rank). If the basis is not �nite, then any basis has the same ardinality.A subgroup of a free group is free.We give now a spei� way of onstruting a free abelian group Abel(S) from a basis S.This onstrution will be used elsewhere. If the set S is �nite, we say that Abel(S) is �nitely

49

generated. Given a set S, not neessarily �nite, we de�ne the free abelian group Abel(S)generated by S to be the set of all total funtions ϕ : S → Z. We add two suh funtionsby adding their values. Given x ∈ S, there is a harateristi funtion ϕx for x, de�ned bysetting ϕx(x) = 1 and ϕx(y) = 0 for y 6= x. The set of funtions {ϕx | x ∈ S} form a basis for
Abel(S), that is, eah funtion ϕ ∈ Abel(S) an be written uniquely as a sum ϕ =

∑
x∈S axϕxwhere ax = ϕ(x).We often abuse notation and identify the element x ∈ S with its harateristi funtion

ϕx. With this notation, the general element of Abel(S) an be written uniquely as a formallinear ombination ϕ =
∑

axx where ax ∈ Z and x are elements of the set S. The set ofelements that an be written as a �nite sum is a subgroup Abelfinite(S) of Abel(S). If Abel(S)is �nitely generated, then Abelfinite(S) = Abel(S) but this is not in general the ase.We an relate the group Abel(S) and the onstrutions of diret produt and externaldiret sum of groups introdued in annex C. It is easy to show that Abel(S) =
∏

x∈S Gxwhere Gx = Abel({x}). AndAbelfinite(S) is the so-alled external diret sum of the groups Gx:
Abelfinite(S) =

⊕
x∈S Gx. Conversely, if G is a diret sum or a diret produt of in�nite ylisubgroups, then G is a free abelian group. The quali�er � diret � in the produt or in thesum, is for the uniqueness of the sum denoting an element. If G =

∏
Gx, then this produtis diret if and only if the equation 0 =

∑
gx implies that gx = 0 for eah x. This in turnours if and only if for eah �xed x, one has Gx ∩

(∑
y 6=x Gy

)
= {0}.The Free Struture of C(K). The resemblane of Cp(K) = Cp(K, Z) to free abelian groupsis strong. And indeed Cp(K) is a diret sum of in�nite yli groups

Cp(K) =
⊕

x∈Kp

Abel({x̂}) ≃
⊕

x∈Kp

Abel({x}) ≃
⊕

Kp

Zwhere the funtion x̂ : Kp → Z is spei�ed by x̂(x) = 1 and x̂(y) = 0 for y 6= x. Usually, weidentify Abel({x̂} and Abel({x}) as well as x̂ and x. In addition, Abel({x}) ≃ Z (just usethe isomorphism nx 7→ n). Then, if Kp is �nite with ardinality n, we have Cp(K) ≃ Z
n.Definition 9 (The free Chain Group). The diret sum of a sequene of free abelian groupsis again a free abelian group. Using this fat we may form the integral hain group :

Chains(K) = C0(K)⊕ C1(K)⊕ ...⊕ Cn(K)⊕ ...Note that if there is no ells in Kq , then we set Cq(K) = 0 (the trivial group).By de�nition (see annex C), eah element of C(K) is a sequene (c0, c1, ..., cn, ...) where
cp is an integral p-hain of Kp and where there is only a �nite number of ck that are nonzero.Suh a weak diret sum is often alled a graded group.The Sum Struture of the Cp(K, G). It is easy to show that Cp(K, G) has also thestruture of a diret sum. Consider the set of the total funtions x̂ : Kp → G suh that
x̂(y) = 0G for all y 6= x. This set is a group Gx for the addition of funtions and Cp(K, G) =⊕

Gx. However, Cp(K, G) is not free beause the Gx are not neessarily free. Consider for50

example the group G = Z/2; then 1.x̂ + 1.x̂ = 0(Kp→Z/2) for all ell x, whih show that Gx isnot free.Now, eah Gx is obviously isomorphi to G (by the mapping c 7→ c(x)). Then, wehave in general Cp(K, G) ≃
⊕

Kp
G and this justify the sum notation for an element. Anelementary hain c whih assoiates g ∈ G to the p-ell x is written gx. If Kp is �nite withardinality n, then Cp(K, G) ≃ Gn. The hain group with oe�ient in G is de�ned by:

Chains(K, G) = C0(K, G) ⊕ C1(K, G) ⊕ . . .5.8 Duality: Cohain, Coboundary and Cohain ComplexWe want now give a very slight generalization of the notion of hain by de�ning ohains.This generalization has several motivations: it allows the handling of � in�nite � hains; itmakes able to relate the hain group with arbitrary oe�ient with the integral hain group;and �nally it introdues naturally a dual of the ∂ operator.Chains with Coe�ient in G as Homomorphisms from Cp(K) to G. We de�ned ahain to be a funtion from the p-ells to an abelian group G, but using linear extension wean and will onsider a hain to be a funtion on integral hains.For let cp =
∑

αixi where eah αi is in G and eah xi is in Kp. Let dp =
∑

njxj be anintegral hain (i.e. nj belongs to Z). We may then de�ne the value of cp on dp by
cp(dp) = cp

(∑

j

njxj

)
=

∑

j

nj . cp(xj) =
∑

j

njαjClearly ∑
j njαj is an element of G sine njαj is the nj-fold sum αj + · · ·+ αj .For a �xed hain cp, this operation yields a homomorphism of Cp(K) into G. However,if Kp is not �nite, then the set Cp(K, G) of hains with oe�ient in G does not ontainall the homomorphisms between C(Kp) and G. For example, suppose g ∈ G, g 6= 0, then hde�ned by h(x) = g for all x is an homomorphism whih annot be represented by a �nitesum: h =
∑

x∈Kp
g x ontains as many terms as Kp has elements. This motivate to onsiderin�nite sums to retrieve all the homomorphisms.Definition 10 (Cohains). A p-ohain on the omplex K with oe�ient in G is a totalfuntion cp from the set Kp to the abelian group G. The set of p-ohains on the omplex Kwith oe�ient in G is a free abelian group (for the pointwise addition of funtions) written

Cp(K, G), and we have: Cp(K, G) = Hom(Cp(K), G).The notation Hom(A,B) denotes the set of homomorphisms between a group A and agroup B. This set is a group for the pointwise addition of funtions. The di�erene betweena ohain cp and a hain dp is that cp is not neessarily zero almost everywhere. Then:� Every hain is a ohain but not onversely.� The set of hains Cp(K) is a subgroup of Cp(K).
51

� However, the two groups Cp(K, G) and Cp(K, G) are idential in the ase of a �niteomplex K or if Kp is �nite.To distinguish between the hains and ohains (if needed), we are following the urrentpratie in using subsripts to indiate the dimension of hains and supersripts to give thedimensions of ohains.The ohain cp an also be written as a sum cp =
∑

x∈Kp
αxx but this sum is not neessarily�nite. Saying that cp =

∑
x∈Kp

αxx is equivalent of saying that cp(x) = αx for all x in Kp.The Charaterization Cp(K, G) = Hom(Cp(K), G) and the Sum Notation. From thepresentation of ohains as (possibly in�nite) sum, we dedues that Cp(K, G) is the group
Hom(Cp(K), G). We an hose this latter result as the de�nition of ohains and reover therepresentation of a ohain as a (possibly in�nite) sum. The group Cp(K) is the free abeliangroup generated by the element of Kp and therefor, Cp(K) =

⊕
x∈Kp

Gx where Gx is the freegroup generated by x. Then11: Hom(Cp(K), G) = Hom(
⊕

x∈Kp
Gx, G) ≃

∏
x∈Kp

Hom(Gx, G).An element of Hom(Gx, G) is an homomorphism h that assoiates to an element n.x of
Gx an element n.gx where gx = h(1.x). We denote this element by gxx. An element of∏

x∈Kp
Hom(Gx, G) an be written as a sum of elements belonging to the fators, beause thesegroups are distints. Thus, an element cp of Cp(K, G) an be written as a sum ∑

x∈Kp
gxxwhere gx = cp(x) and this gives the previous sum notation for a ohain.The Kroneker Index. In plae of the funtional notation, it is often onvenient to use aprodut notation. That is, we use cp.dp to denote the value of cp on dp rather than the morefamiliar notation cp(dp). The result of this � produt � is alled the Kroneker index of cpand dp.Consider two p-ells x and y. They an be viewed as the two elementary integral hains

xp = 1.x and yp = 1.y and also as the two elementary integral ohains xp and yp (a hain isa ohain). Then we have: xp.yp = yp.xp = 0 if x 6= y and xp.xp = 1 elsewhere.We have mentionned the dimension in subsript or in supersript to make lear whatobjet is at hand, but we shall delete them when there is no onfusion.Dual Homomorphisms, Coboundary Operators and Cohain Complex. The abeliangroup Cp(K) is a Z-module and the group Hom(Cp(K), Z), wih is also the set of integralohains Cp(K), is a Z-module alled the dual of Cp(K) (see annex C). This notion of du-ality is the diret generalization for modules of the dual of a vetor spae. Intuitively, if oneonsider a hain as � vetors �, then the ohains are the � linear forms �. We an go furtherin the analogy with the notion of dual homomorphism.Definition 11 (Dual Homomorphism). A homomorphism σ : A→ B gives rise to a dualhomomorphism
Hom(A,G)

eσ
←−− Hom(B,G)11We use the following result: the homomorphisms from the weak diret sum of the Pi to a group G isisomorphi to the diret produt of the homomorphisms from Pi to G.52

going in the reverse diretion and de�ned by: σ̃(ϕ) = ϕ ◦ σ.Definition 12 (Coboundary Operator δ). We de�ne the oboundary operator δ as thedual of ∂: δ = ∂̃. The operator ∂p+1 on integral hains is an homomorphism from Cp+1(K)to Cp(K), thus
δp = ∂̃p+1 : Cp(K, G) −→ Cp+1(K, G)so that δp raises dimension by one. The e�et of operator δp is de�ned by:
(δpcp) . dp+1 = cp . (∂p+1dp+1)Definition 13 (Cohain Complex). We de�ne the (homologial) abstrat ohain omplexsimilarly to the hain omplex. We write C(K, G, δ) for the sequene (Cp(K, G), δp)p≥0 wherethe oboundary operators are homomorphisms with signature as follows:
C1(K, G)

δ1

−−→ C2(K, G)
δ2

−−→ C3(K, G)
δ3

−−→ · · ·The abelian group Cochains(K, G) = C0(K, G)⊕C1(K, G)⊕ . . . is alled the ohain group.An abstrat ohain omplex C(K, G, δ) is said homologial or alled a graded di�erentialgroup with operator δ, i� for all p, δp+1 ◦ δp = 0.De�ning ∂, then there is a unique δ dual operator, and vie-versa. If ∂p ◦ ∂p+1 = 0,then by duality we have also δp+1 ◦ δp = 0. Thus, if C(K, G, ∂) is an homologial abstrathain omplex, then C(K, G, δ), where δ is the dual of ∂, is an homologial abstrat ohainomplex.A fundamental di�erene between ∂ and δ is that ∂x depends only on (the losure of) xwhile δx depends on how x lies in the omplex K. Furthermore, it is possible that x is a ellbelonging to the boundary of in�nitely many ells, even if the omplex K is losure-�nite.Thus δx is not neessarily a �nite sum. However, in the following we want to onsider onlyloally-�nite omplex K. Then if we take the boundary or the oboundary of a hain, weobtain a hain again.Geometri Interpretation of δ. The de�nition of δ is highly algebrai in nature. But it ispossible to �gure the geometri meaning of δ. The dual of a poset (E,<) is the poset (E,>)with the reverse order between elements. Then we an de�ne the analog of ∂ : Kp → C(K)for the dual poset. Let δ′ be this operator. Following the de�nition of ∂, we must have
|δ′(x)| = {y | x ≺ y}.When onsidering both ∂ and δ′ together, we need to ensure some onsisteny betweenthe oe�ients assoiated to eah boundary or oboundary element. Let x be an element of
Kp−1 and y an element of Kp. Then the oe�ient of x in the hain ∂y is (∂y)(x) = (∂y).xusing the Kroneker notation. If x is in the boundary of y, then x ∈ |∂y| and (∂y).x 6= 0.However, if x ∈ |∂y| then x ≺ y and then y ∈ |δ′x|. This means also that (δ′x).y 6= 0. Theproblem is to relate (∂y).x and (δ′x).y.Remark that both (∂y).x and (δ′x).y are zero or nonzero together. A natural and simpleonstraint is to set (∂y).x = (δ′x).y. If this onstraint is satis�ed, we say that ∂ and δ′ aredual operators. Figure 22 shows some example of this onstraint.53

We rewrite the property by remarking that (∂y).x = x.(∂y) whih makes the statment ofthe equality more symmetri and we reover the de�nition 12 of δ by linearity. We an sum-marize: the oboundary operator oinides with the boundary operator in the dual abstratomplex. This gives also the interpretation of δ as a transport operation, see next setionand illustration in �gure 24.One omes to reognize the relation cp.(∂dp+1) = (δcp).dp+1 as a ombinatorial formof Stokes'theorem [Sha90℄. The Stoke's formula links the di�erential of a form ω and theboundary operator of a domain V : ∫
∂V ω =

∫
V dω. Take for example p = 2, then dp+1 is avolume. Interpret cp as the integral (the sum) of a form (the oe�ients of the ells in cp) onsome domain (the integral hain dp). The equality says that the value taken by the funtion

cp on the surfae boundary equals the value taken by the new form δcp on the volume. Thisremark an be greatly re�ned, see for instane [Ton74, Ton76, CS00℄.
x

y

z
a

c

b
x

y

y
x

z

e

dFigure 22: Example of dual ∂ and δ operators. We work in the integral hain group. For theomplex to the left, we have δx = z and ∂y = a + b + c. Then, (δx).y = x.(∂y) = 0. For the omplexin the middle, we have |δx| = {y, z} and |∂y| = {x, d, e}. If we de�ne ∂y = x + d + e, then x.(∂y) = 1whih implies that (δx).y is nonzero. Duality further �xes the oe�ient (δx).y = 1. For the omplexto the right, we may speify ∂y = 2x to state that the vertex x is enounter two times, at the twoends of the edge y. But then, we must �x (δx).y = 2, that is δx = 2y to ensure the duality of ∂ and
δ. The ondition δx = 2y an be interpreted as: the edge y is onneted two times to the vertex x.5.9 Arbitrary Labeling the Cells of a ComplexSuppose we want to label some of the ells of a omplex with values taken in an arbitrarysetVal . Suh labeling an be represented by a partial funtion ℓ from K toVal . This partialfuntion an be extended into a total funtion given the value ⊥, ⊥ 6∈Val , to the ells thathave no image by ℓ. Then, the funtion ℓ an be seen as a hain if we give an abelian groupstruture toVal ∪ {⊥}. We review two possibilities amongst others.Labeling with Idem(Val). We an use the abelian idemgroup generated byVal . This groupis denoted by Idem(Val). It ontains all the subsets ofVal written as sums, and the element
0 is the the empty set. We identify ⊥ with 0 and a value v ∈ Val with the orrespondingsingleton in Idem(Val). Then we an write ℓ =

∑
x∈K ℓx x where ℓx = ℓ(x) if ℓ(x) is de�nedand 0 otherwise. An example is given in �gure 23.Note that using the group Idem(Val) instead of the setVal assoiates atually a subset of

Val to eah ell. By indentifying the singletons with the elements ofVal , we represent thedesired labeling in a natural way. Partiality is handled using 0 to represent ⊥ 6∈Val .
54

a

s

c

b s’

f

e
5

3

4

1

2

d

ℓ(1) = δ, ℓ(2) = α
ℓ(3) = β, ℓ(4) = γ
ℓ(a) = ρ, ℓ(b) = κ
ℓ(c) = σ, ℓ(d) = τ
ℓ(s) = ωand ℓ(x) unde�ned for the others x.

β

γδ

α

ω
K0 = {1, 2, 3, 4, 5}

K2 = {s, s′}
K1 = {a, b, c, d, e, f}

κ τ

ρ

σFigure 23: The labeling of the ell of an abstrat omplex. The �gure in the left gives theabstrat omplex K and its p-ells Kp (for p = 0, 1, 2). The labeling ℓ is de�ned on the right. In thisdiagram, we indiate the images of the funtion ℓ by writing next to eah ell the value of the funtionon that ell. This funtion has for odomain the setVal = {α, β, γ, δ, ρ, τ, σ, κ, ω} whih do not havean a priori abelian group struture. The funtion ℓ an be written as a hain of C(K, Idem(Val)):
ℓ = δ.1 + α.2 + β.3 + γ.4 + ρ.a + κ.b + σ.c + τ.d + ω.s. Note however that in C(K, Idem(Val)) there arealso hains like (α +Idem(Val) β).1 whih would represents a funtion f suh that f(1) = {α, β} andunde�ned elsewhere.Labeling with Abel(Val). One an also use Abel(Val) instead of Idem(Val). We rely onthe injetion x 7→ x to represent an element ofVal by an element of Abel(Val). This grouphas a riher struture and enables the assoiation of a ell to a � generalized multiset � ofValelements. In a generalized multiset, an element an have a negative multipliity.Remark that ifVal has already a group struture +, the operation in Abel(Val) does notoinide with the operation +Abel in Abel(Val). Take for exampleVal = Z, then x+Abel(−x) 6=

0Abel. Indeed, both x and (−x) are generators of Abel(Z) and they are distint.Boundary and Coboundary as Transport Operation. In an arbitrary labeling of aomplex, we an interpret the ∂ and δ operations as transport operations, see �gure 24 andthe referenes [Ton74, Ton76, PS93℄.Suppose that we want to valuate the ells of the hains by an element ofVal . We use theprevious enoding based on Abel(Val) for the hain oe�ients. We de�ne the boundary of aell x by:
∂x =

∑

y≺x

y and extend ∂ linearly: ∂(
∑

αxx) =
∑

αx∂xConsider a ell x that have several suessors in the hain. Then the e�et of ∂ as a transportoperation is to send to x the oe�ients of theses suessors. The result is onvenientlygathered as a formal sum in Abel(Val) and no oe�ients are lost (using Idem(Val) insteadof Abel(Val) then we an reord only the oe�ients that appear an odd number of times).We an then further interpret � the ollision at ell x of the transported values � using anhomomorphism to resolve the � ollisions � and to ompute the �nal value of x.To be more onrete, suppose that the ells in �gure 24 (left) are valuated by reals, thatis, we onsider hains in C(K,Abel(R)). For instane, take ω = 1.6 and ω′ = 3.1 in hain ℓ2.Then
∂(1.6s + 3.1s′) = 1.6a + 1.6b + 1.6c + (1.6 +Abel 3.1)d + 3.1f + 3.1e55

We say that the value 1.6 oming from s and the value 3.1 oming from s′, ollide at ell d.We want to ombine olliding values into a real to get again a real valued hain. Supposethat the ombination funtion is the sum of reals. Then we would use the homomorphism
h from Abel(R) to (R,+) that interpret the +Abel as the usual +R. The homomorphism hbetween the groups of values, is easely extended into an homomorphism on hains, by de�ning
h(αx) = h(α)x for all ell x and then using linearity.Instead of using a funtion h to ombine the olliding values, we an work diretly withhains in C(K, (R,+)). In this way, the ombining funtion is diretly the group operationof the hain oe�ients. However, using Abel(R) and then an a posteriori homomorphism his more general. For instane, suppose that we work with oe�ients in (R,+) but we wantto ombine the olliding values by multipliation. This is not easely expressed. But using
Abel(R) at the �rst plae, we have just to hange the funtion h.Intuitively, one an see the interest of using an abelian group for the oe�ients. Theombination funtion must not depend on the order of the ombinations and then the hain
(α + β)x must be equal to the hain (β + α)x.

ρ

σ

τκ τσ + κ + τ + ρω

ω

ω

ω

ω + ω′

ω
′

ω′

ω′Figure 24: Depition of the boundary and oboundary operation on hains. We onsiderthe abstrat omplex already used in �gure 23. The e�et of taking the boundary operator ∂ on
ℓ2 = ω.s+ω′.s′ is pitured by the diagram in the left. The �gure in the right gives the e�et of takingthe oboundary δ of the 1-hain ℓ1 = ρ.a + κ.b + σ.c + τ.d. In these two �gures, the urved arrowindiate values (in bold) being transferred from a p-ell to the preeding (p− 1)-ells (for ∂) and froma p− 1-ell to the sueeding p-ells (for δ).5.10 Topologial ColletionsA topologial olletion assoiates a value to some ells of a omplex. In addition, we mustbe able to speak of the arrier of the olletion (the ell that have a value), of the neighborof an element, of subolletion and of the boundary of a subolletion. All these notionsan be developped on top of the notion of hain omplex presented above. The previousparagraph showed how arbitrary values an be assoiated to the ells using the notion ofhain (or ohain). But then, it misses the representation of the oe�ients used to omputethe boundary struture.The idea is naturally to represent both the oe�ients in B and the label in Abel(Val).However, using the group G = B × Abel(Val) seems at �rst sight not adequate: all theells (0B , α) are distinguished although they represent the same absene of a ell in a hain(beause the oe�ient 0B) and then the value α does not matter. However, the de�nition

56

of an alternative to the artesian produt is not easy at all. For example, the onstrution(
B × Abel(Val)

)
/

(
{0B} × Abel(Val)

) ollapses all the values (0B , α) to 0B×Abel(Val). But,all values (g, α) are ollapsed on (g, 0) whih is ertainly not what we want. So, does existsa produt with projetion π1 and π2 suh that π2x = 0 whenever π1x = 0? Suppose thatthe group of oe�ients used to ompute the boundary is Z/2; and suppose we have three
2-ells a, b and c suh that ∂a = 1+2, ∂b = 1+3 and ∂c = 1+4 (imagine a graph with threeedges and four verties, the edges are linked by one end to the vertex 1 and to the other endto a unique vertex). We have ∂(a + b + c) = 1 + 2 + 3 + 4 so it seems that it is natural tohave ∂(α.a + β.b + γ.c) = (α + β + γ).1 + α.2 + β.3 + γ.4. But the term (α + β + γ).1 isobtained as α.1 + β.1 + γ.1. If the values (0, ε) are identi�ed with (0, 0), then by omputing�rst (α.1 + β.1) + γ.1 we obtain the result γ.1 while omputing α.1 + (β.1 + γ.1) we obtain
α.1. So, there is no produt having the wanted property and we use simple the artesianprodut.Definition 14 (Topologial Colletion).A topologial olletion shape is a triple S = (K, B, ∂) suh that K is a loally �niteabstrat omplex of �nite dimension and C(K, B, ∂) is an homologial hain omplex. Atopologial olletion type is a pair of T = (S,Val) where S is a shape and Val is anarbitrary set. A topologial olletion is a pair (T , c) where T is a topologial olletiontype ((K, B, ∂),Val) and c is a ohain: c ∈ Cochains(K, B ⊙Val). The produt B ⊙Valdenotes the artesian produt B × Abel(Val). The set of olletions with a given type T isdenoted by TC(T); the set of olletions with a given shape shape S is written TC(S); theset of olletion on a given omplex K is written TC(K), et.Often we omit to mention the shape or the type T of the topologial olletion when itis lear from the ontext; we says diretly that a hain c is a topologial olletion and wewrite c ∈ T or c ∈ S if S is the shape and T the type of c.The ohain group Cochains(K, B ⊙Val) is alled the full ohain group assoiated tothe type T . The ohain group Cochains(K, B) is alled the shape ohain group assoiatedto T . And Cochains(K,Abel(Val)) is alled the value ohain group.If c is a olletion, and x ∈ Kp, then c(x) = (g, u) with g ∈ B and u ∈ Abel(Val) andwe say that the value of c at x is u. The funtions cb and cv are the �rst and seondprojetion of c. That is, cb(x) = g and cv(x) = u for c(x) = (g, u). The funtions cb and
cv assoiate an element of a group to a ell and then are ohains: cb ∈ Cochains(K, B) and
cv ∈ Cochains(K,Abel(Val)).For all olletion c we have |cv | ⊂ |c| and |cb| ⊂ |c|. The set Residu(c) = {x ∈ K | cb(x) =

0B and cv(x) 6= 0Abel(Val)} is alled the residu of the olletion. We usually omit the sub-sripts of 0 and rely on the ontext to make lear on whih group 0 belongs. A olletion cis residu-free if Residu(c) = ∅.A topologial olletion c is �at if cv(x) = 0 or cv(x) ∈Val for all x ∈ K. It is monolayerif cb is a p-ohain for some p, i.e. it exists an integer p suh that |cb| ⊂ Kp.Integral and Modulo 2 Shapes. An important ase is when B = Z or B = Z/2. In thisase, we say that a hain c has an integral shape or a modulo 2 shape respetively. We use57

a speial notation for integral and modulo 2 hain:
c =

∑
αx.nxxwhere nx ∈ Z or Z/2, and αx ∈ Abel(Val). But the terms α.(−1)x are written simply −α.xand α.x is for α.1x. For instane, c = "ab".2x − "def".y + "rosae".z stands for a hain csuh that: c(x) = (2, "ab"), c(y) = (−1, "def") and c(z) = (1, "rosae").Subolletions. We need now to introdue the notion of subolletion of a olletion.The restrition c\S of a topologial olletion c by a set S is the hain c\S de�ned by

(c\S)(x) = c(x) if x ∈ S and else (c\S)(x) = 0. A restrition is too general to represent asubolletion: a subolletion is a onneted part of a olletion. It must be represented bya hain too.Definition 15 (Split, Path and Subolletion). Let c be a ohain and c′ and c′′ be twoohains suh that |c′| ∩ |c′′| = ∅ and c = c′ + c′′. Then we say that c′ and c′′ are a split ofthe ohain c and we write c D c′, c D c′′ and c′′ = ∁cc
′ or c′ = ∁cc

′′. A ohain c′ is a pathof the ohain c ∈ Cochains(K, G), if c D c′ and if Shape |c′| is a onneted set of K. Let c bea olletion; a olletion c′ is a subolletion of c if c′ = c\|c′| and if c′b is a path of cb.5.11 TransformationsWe want now de�ne several kinds of transformations of a topologial olletion.Definition 16 (Shape-preserving, Pointwise and Loal Operations).A funtion f from TC(S,Val) to TC(S,Val ′) is shape preserving i� for all c, (fc)b = cb.It is pointwise if it is shape preserving and if it exists a funtion g : Abel(Val)→ Abel(Val ′)suh that (fc)v = g ◦ cv . It is loal if it is shape preserving and if it exists a funtion
g′ : TC(S,Val)→ Abel(Val ′) suh that (

fc
)
v
(x) = g′

(
c\(Stx)

).Variations on the notion of loality are obtained by hanging Stx for Stx or Lkx or |x|,et.Definition 17 (Renaming Operations). Let h be a bijetion from K to K′. Then, therenamed omplex K′ = h(K) is suh that dimK′ x′ = dimK h−1(x′) and x′ ≺K′ y′ i�
h−1(x′) ≺K h−1(y′). If S is a olletion shape (K, B, ∂), then the renamed shape S ′ = h(S)is de�ned by S ′ = (K′, B, ∂′) where the boundary operator ∂′ is de�ned by: ∂′x′ =

∑
gyh(y)if ∂h−1(x′) =

∑
gyy. The renaming of the olletion c into h(c) is a funtion from TC(S)to TC(h(S)) suh that h(c)(x) = c(x).h(x).We an now de�ne the basi transformation desribed in setion 2.1 page 12. The basiintuition hidden behind this de�nition is skethed in �gure 25. Note that we do not desribea devie to selet a subolletion into a olletion, neither we give ondition on the gluing ofthe substituted subolletion. We just speify that untouhed parts of the olletion mustremain untouhed, both from the value point of view (ondition 1) and the shape point ofview (ondition 2).

58

Definition 18 (Split, Path and Non-Loal Substitutions). Let c and d be olletionswith respetive subolletions c′ and d′. Then d is a path substitution of c′ by d′ if the twofollowing onditions hold:1. ∁cc
′ = ∁dd

′2. Shape |∁cc
′| = Shape |∁dd

′|If we relax the onnetivity ondition on d′, then we say that we have a split substitution. Ifthe ondition is also relaxed for c′, then we have a distributed (split or path) substitution.If it exists a funtion f suh that d′ = f(c\|St c′|) then the substitution is said omputedby f . In addition, the substitution is oboundary preserving if δc′b = δd′b and boundarypreserving if ∂c′b = ∂d′b.The �gure 26 gives several examples of various kinds of substitution.Note that the operator ∂ and its dual δ de�ned for a olletion do not appear expliitlyin the straight de�nition of a substitution. However, they omes into play when one has tospeify preisely the proess of gluing d′ and c′′ into the new olletion d.There is several variations on the notion of � omputed by f � to aomodate the possiblevariation on the neighborhood notion.Definition 19 (Simple Transformation). We say that d is a simple transformation oftype n of c i�:� type I: it exists a pointwise or a loal funtion f suh that d = f(c);� type II: d is a renaming of c;� type III: it exists subolletions c′ and d′ of c and d suh that d is a path substitution;� type IV: idem but with a split substitution;� type V: idem but with a non-loal substitution.A pointwise funtion is a path-, boundary and oboundary preserving- substitution om-puted by a funtion. The urrent version of the MGS interpreters allow only this kind ofsubstitutions, see setion 6.

59

()

(b)
Shape(∁cc

′)

dim n

(a) Shape(c′)

Figure 25: Parts of a omplex involved in a substitution.We have pitured symbolially the abstrat omplex K as a Hasse diagram (f. Fig. 18). The arrierof the monolayer hain c onsists in all the n-ells pitured as irle (diagram (a)). The three blakirles in the middle speify the arrier of the subolletion c′. Consequently, the four empty irlesare the arrier of c′′ = ∁cc
′.The shape Shape(c′) of c′ is skethed as the gray region in diagram (a): the subomplex |c′| spannedby c′ is in dark gray while the p-ells above this subomplex are in light gray. The shape Shape(c′′)is skethed in gray in diagram (b). This part of the omplex must remain unhanged aross thesubstitution.The diagram () has two gray regions, one near the top and one near the bottom (eah is omposedof several parts). The region near the bottom, orresponds to the intersetion Shape(c′) ∩ Shape(c′′).Cells in this region have a dimension less than n. The de�nition of a substitution says that this regionmust remain unhanged in the �nal result (beause the belongs to the shape of c′′ and then must notbe touhed by the transformation).The region near the top orresponds to the p-ells x, p > n, suh that x has an intersetion both in

|c′| and |c′′|. The de�nition of a substitution does not say anything about suh ells. However, if the
n + 1-ells remain idential aross the transformation, then the transformation is said oboundarypreserving. 60

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)Figure 26: Substitutions in a line graph.The shape of the olletion c is a line graph with 7 verties. The olletion is monolayer and we assumethat all verties have a value. The �rst diagram indiates the subolletion c′ with shape Shape(c′)indiated in bold (bold edges and/or bold verties, however note that only the verties appear in thehain c′). The split c′′ = ∁cc
′ are the verties draw as empty irles. The dotted edges are the 1-ellsthat are not in Shape(c′) nor in Shape(∁cc

′). The other diagrams give several possible substitutions ofthe subolletion c′. The shape of the substituted olletion d′ is pitured in gray. The dotted edgesdo not belongs to Shape(c′′) or to Shape(d′): they are dependant of the substitution proess. One animagine that they ome from the handling of the p-ells, p > n that are neither in Shape(c′) nor in
Shape(∁cc

′) (in the urrent version of MGS, this handling is �xed and depends of the olletion kind,i.e. the type of the underlying topology). Beause a olletion is a 0-hain, there is no intersetionbetween Shape(c′) and Shape(c′′), so there is no onstraint in the olletion d′. All examples arenon-distributed substitutions. Examples (e) and (f) are split substitution. Example (d) and (i) areexamples where the hain d′ is redued to 0 but the underlying topology is nevertheless hanged.Beause hains are 0-hains, all transformations are neessarily boundary preserving (beause theboundary of a 0-ell is 0). Examples (a � , g) are oboundary preserving: this implies that the dottededges are identi�ed with the dotted edge in the initial olletion.61

5.12 The Example of a 2D GridTo illustrate the previous notions, we gives here a possible model for 2D arrays. Topologialstruture for set, multiset and sequene are skethed in the next setion.Two dimensional grids will be rendered by �at, monolayer topologial olletions. Fromthis point of view, an array is a labeled graph: values are arried by verties and the onne-tions rely on edges.For, we de�ne the abstrat omplex (G, <) by
G0 = Z× Z,

G1 =
{
{x, y} | x, y ∈ G0, x− y = (0, 1) or x− y = (1, 0)

}

x ≺ {x, y} and y ≺ {x, y} for x, y ∈ G0The abstrat omplex G is not �nite but loally-�nite. The shape of a 2D grid is the triple
(G, Z/2, ∂) with ∂ de�ned by:

∂x = 0, for x ∈ G0 and ∂{x, y} = x + y, for x, y ∈ G0The shape of a 2D grid is homologial, beause, for u ∈ G1, ∂2u = ∂(
∑

x∈G0
x) =

∑
0 = 0beause ∂x = 0 for x ∈ G0.A data �eld with element inVal is an element of the full 0-ohain group C0(G, Z/2⊙Val).A data �eld generalizes the notion of array onsidering non retangular shapes for funtionalarrays, see [GMS96, Lis93℄. A data-�eld is a monolayer olletion.Let x = (a, b) be in G0, then

St(x) =
{

(a, b), (a− 1, b), (a + 1, b), (a, b− 1), (a, b + 1),

{(a, b), (a − 1, b)}, {(a, b), (a + 1, b)}, {(a, b), (a, b − 1)}, {(a, b), (a, b + 1)}
}Then, it must be obvious that a type I transformation replaes the value of a vertex x by avalue omputed from the 4-neighbors (the so-alled Von-Neuman neighborhood) of x. See�gure 27.

(2,3) (3,3)

{(1,2), (1,3)}

(1,4)

{(3,3), (3,4)}{(0,3), (1,3)}

Stx

Stx

xFigure 27: Modelling of 2D grids.5.13 SummaryWe have de�ned a topologial olletion c to be a hain on a given hain omplex thatdesribes the topology of the olletion and a labeling of the ells. A substitution replaes a62

subhain c′ by another subhain, preserving the topologial struture of the omplement of
c′ in c: ∁cc

′. What remains to be done is:� to devise various devies to speify the subolletion to be substituted;� to design several onstrutions, available at user-level, to speify how the new olle-tion d′ must be injeted into the old one at the plae of c′.Atually, the strategy implemented in the urrent version of the MGS interpreters embeeds thenew olletion into the old one using a �xed strategy depending on the olletion type. Thesestrategies are desribed in the next setion. Thus, it is not possible to hange the topolog-ial struture by the appliation of a transformation. The motivating example presented insetion 1.5 is still out of reah.

63

64

6 Comparaison with Other ApproahesWe want to show that some widely used omputational models an be seen as spei� instanesof transformations of some topologial olletions. The level of the disussion is informal.Four Biologially Inspired Computational Models. One of our additional motivationsis the ability to desribe generially the basi features of four models of omputation: Γ andthe CHAM, P systems, L systems and ellular automata (CA). They have been developed withvarious goals in mind, e.g. parallel programming for Γ, semanti modeling of nondeterministiproesses for the CHAM, alulability and omplexity issues for P systems, formal languagetheory and biologial modeling for L systems, parallel distributed model of omputation forCA (this list is not exhaustive). We assume that the reader is familiar with the main featuresof these formalisms but a short desription of these omputational models is given below forthe readers onveniene.All these omputational models rely on a biologial or biohemial metaphor. It is thennatural to require their integration in a uniform framework. Beause they �t harmoniously, wegain on�dene that the underlying onepts of topologial olletion may reveal as unifyingand overing a broad lass of biologial DS with a dynamial struture.The Multi-Agent Paradigm. This setion ends by omparing the appraoh of topologialolletions with the multi-agent modeling paradigm. We show that the main di�erene relieson the entity on whih the evolution funtion (i.e. transformation in the ase of topologialolletions and the behavior in the ase of multi-agent) is linked.6.1 The topology of Sets and Multisets: the programming language Γ andthe CHAMThe omputational model underlying Γ [BM86, BCM87℄ is based on the hemial reationmetaphor; the data are onsidered as a multiset M of moleules and the omputation is asuession of hemial reations aording to partiular rules. A rule (R,A) indiates whihkind of moleules an reat together (a subset m of M that satis�es prediates R) and theprodut of the reation (the result of applying funtion A to m). Several reations may bepossible at the same time. No assumption is made on the order on whih the reations ours.The only onstraint is that if the reation ondition R holds for at last one subset of elements,at least one reation ours (the omputation does not stop until the reation ondition doesnot hold for any subset of the multiset).The CHemial Abstrat Mahine (CHAM) extends these ideas with a fous on the ex-pression of semanti of non deterministi proesses [BB89℄. The CHAM is an elaboration onthe original Γ formalism introduing the notion of subsolution enlosed in a membrane. Itis shown that models of algebrai proess aluli an be de�ned in a very natural way usinga CHAM: the fat that onurreny (between rule appliation) is a primitive built-in notionmakes proof far easier than in the usual proess semantis.
65

The Topology of Sets. Informally, an element in a set (or in a multiset) is a neighboor ofany other element. Hene, the MGS pattern x, y in a rule selets an arbitrary pair in the set,and the pattern x+ selets an arbitrary non-empty subset.Using the tehnial notions introdued in setion 5, we an desribe this situation moreformally. A set V is represented by a topologial 0-olletion on a one dimensional shapewith verties V and only one edge ⊤. The funtion ∂1 is de�ned by ∂1⊤ =
∑

V . With thisde�nition, an element of V is onneted with any other element. The hain group desribinga set is then partiularly simple: Cp = 0 for p 6= 0, K0 = V and C0 = C0(K, Z/2⊙ V). A set
V orresponds to the hain ∑

x∈V x.x using the notation desribed in page 57.Let c′ be the subolletion to be replaed by d′ into the olletion c to give a new olletion
d. The �xed strategy used to build d from d′ and c′′ = ∁cc

′, is simply to set ⊤d = |c′′| ∪ |d′|.This desription is only ombinatorial and does not admit a geometri realization. Indeed,a geometri 1-ell is homeomorphi to the interval [0, 1] and then admits only two 0-ells in itsboundary. If one insists to have a geometri realization of topologial sets, then it is enoughto shift the dimension of the ells by one: the elements of V are the many edges of one uniquefae.The Topology of Multisets. A multiset M of element e ∈ E an be represented by a set
M̂ ⊆ N × E. If e ∈ M with multipliity n, then the n elements (1, e), (2, e), ..., (n, e) belongto M̂ . The multiset M is represented as the 1-olletion assoiated to the set M̂ . With thisenoding, two arbitrary multiset elements are onneted, in aordane with the fat thatany submultiset an be mathed and replaed in a Γ rule. Furthermore, the appliation ofone Γ rule on a multiset M is a loal, boundary preserving, path substitution.6.2 Nesting of Multisets: P systemsP systems [Pau98, Pau00℄ are a new distributed parallel omputing model based on the notionof a membrane struture. A membrane struture is a nesting of ells represented, e.g, by aVenn diagram without intersetion and with a unique superset: the skin. Objets are plaedin the regions de�ned by the membranes and evolve following various transformations: anobjet an evolve into another objet, an pas through a membrane or dissolve its ontainingmembrane. As for Γ, the omputation is �nished when no objet an further evolve.The P Systems Topology. The ase of P systems is more interesting, beause the topologyan be used to take into aount the loality of a omputation step. In this approah,the region assoiated to a membrane would be a 2-ell and the membranes would be 1-hain; then a P system is viewed as a 2-olletion with a 2-omplex organization. Note thatmembrane systems are sometimes desribed by a sequene of well balaned parenthesis, whihspeify only the relative inlusion of membrane and not their onnetion in one level. Theorresponding topology is then weaker. In the opposite, the organisation enabled by the twodimensional mapping of the membrane in a plane is weaker than the ombinaisons enabledby 3D membranes, et.

66

A ruder approah just assoiates a multiset M to the region assoiated with the skin ofa P system. The di�erene with Γ is that the elements of M an be multiset themselves,assoiated to the inner membranes. In this approah, P systems are viewed as a theory ofnested multiset rewriting.6.3 The Topology of Sequenes: L systemsL systems are a formalism introdued by A. Lindenmayer in 1968 for simulating the devel-opment of multiellular organism. Related to abstrat automata and formal language, thisformalism has been widely used for the modeling of plants. A L systems an be roughly de-sribed as a grammar. The produtions are applied in parallel in a non deterministi manner.0L system are ontext-free grammar. D0L system are deterministi ontext-free grammar:given a letter A there is at most one prodution that an be applied. Parametri L systemsdeal with module instead of letters: a module is a letter assoiated with a list of parameters.The prodution rules are extended with onditions on the parameters. For example,
A(x, y) : y ≤ 3 −→ A(2x, x + y)is a rule that an be applied to the module A(2, 5) to gives the module A(4, 7). This ruleannot be applied on A(7, 1) beause the �rst parameter x, does not math the ondition.The Topology of Sequenes. Setion 5.12 gives a formalization of the topology of a grid.The model an be weakened to gives the topology of a sequene.A sequene ℓ = <ℓ1, ℓ2, . . . , ℓn> is a 0-olletion whose shape is a hain omplex of di-mension 1. Let ik be n reals in inreasing order; the underlying omplex K is de�ned by
K0 = {i1, . . . , in} suh that ij < ij+1

K1 =
{
(i1, i2), (i2, i3), . . . , (in−1, in)

}

∂(k, k′) = k +C k′(this last sum is a formal sum). The shape is C(K, Z/2, δ). Hene, ℓ is represented by thehain ∑
1≤j≤n ℓj.ij (using the notation desribed in page 57).An MGS rule c′ => d′ applied to a topologial sequene c orresponds to a substitutionwith result d. The strategy used to glue the new subolletion d′ and c′′ = ∁cc

′ into the result
d is the following:� if d′ = 0 (that is, the MGS rule anel c′) then Shape(d) = Shape(c′′);� if d′ 6= 0, then δc′ = δd′ (the δ in the left hand side must be taken in the shape of c whilethe δ in the right hand side must be taken in d). This ondition, together with d = d′ +

c′′, is enough to speify ompletely Shape(d): Shape(d) = Shape(d′)∪ Shape(c′′)∪ |δc′|.In a MGS rule, the sequene d′ is omputed solely as a funtion from the subsequene c′.Thus, if d 6= 0, the MGS rule is a path-, boundary and oboundary preserving- substitutionomputed by a funtion. 67

Topology of Context-Free Sequene. However, we an propose an alternative. Indeed,for D0L-system, the right hand side of a prodution rule is limited to only one element: thereis no interation with the neighborhood and the orresponding grammar is ontext-free. InMGS terms, it means that all rule have the form:
(x/ . . .) => . . .This property an be enfored using a more preise model, that forbids a dependane betweenan element and its neighboor in the substitution proess.A sequene v1, ..., vn of n values is then represented by a 1-olletion with shape C(K, Z/2, ∂)de�ned by: K0 = {0, 1, .., n} and K1 = {(0, 1), (1, 2), ..., (n − 1, n)}. We have ∂0x = ∅ and

∂1(i, j) = i + j (where the sum in the right is the group operation of C1). And a olletion cis a monolayer 0-hain c = v1.(0, 1) + ... + vn.(n − 1, n).In this formalization, the appliation of only one prodution x→ f(x) of a D0L system isa loal, boundary and oboundary preserving, path substitution omputed by f . Rigorously,the argument of f is the the hain c\Stx, but with our topology, c\Stx = c\x whih showthat the new value replaing x depends only on x.6.4 The Topology of Arrays: Cellular AutomataCellular automata (CA) have been invented many times under di�erent names: tessalationautomata, ell spaes, iterative arrays, et. However, a fair fration of the omputer researhon two-dimensional ellular automata has its ultimate origins in the work of J. Von Neumannto provide a more realisti model for the behavior of omplex system in biology [VN66℄.In a simple ase, a 2D ellular automaton onsists in a grid of ells or sites, eah with avalue taken in a �nite set V. The values are updated in a sequene of disrete time steps,aording to a de�nite, �xed, rule. Denoting the value of a site at position (i, j) by ai,j,a simple rule gives its new value as a′i,j = ϕ(ai,j ; ak1 , ..., akp
), where ϕ is a funtion from

Vp+1 to V whih spei�es the rule, and where the akj
are the values of the p neighborsof site (i, j). For example, the Von Neumann neighbors of a ell (i, j) are the four ells

(i− 1, j), (i + 1, j), (i, j − 1) and (i, j + 1).Many variations are possible: organization of the ells in a regular lattie of any dimensionsor even in a general graph, variable neighborhood, various �nite set V. However the mainharateristis of CA are largely una�eted by suh additional ompliations.The Topology of Arrays. The topology of arrays has been introdued in setion 5.12. Arule of a ellular automata is a loal, shape preserving, path substitution omputed by afuntion (the evolution funtion of an elementary ell).6.5 Prodution Systems, Rewriting systems and All ThatProdution systems is a term used in arti�ial intelligene to desribe systems spei�edas a set of prodution rules ating on a global database under the supervision of a ontrol
68

system [Nil80℄. Rules are assoiated with appliability onditions and the ontrol systemhooses the next rule to apply. The termination of the omputations is determined by aglobal termination ondition.More spei�ally, in the �eld of grammar systems, rewriting systems or formal languagetheory, the idea of many possibly di�erent loal derivations relations integrated aordingto spei� strategies, has been extensively studied and applied with di�erent patterns inthe searh for new modeling approahes of biosystems [Man01, Pau00, Pau98, FMP00℄. Inthese approahes, simple omponent are spei�ed together with their integration: monolithiomplex systems are redued, by means of ooperation and distribution, in terms of simplerparts.MGS partiipates of these approahes. For instane, an MGS program an be seen as aprodution system, the termination ondition holding when the �xpoint has been reahed.The originality of the MGS approah lies in the emphasis put on the topologial view of therules and on the database, while prodution system are often based on logial inferenes orgrammatial formalisms. The mehanisms used to desribe the integration of the di�erentparts rely heavily on the topologial struture of the system, whih is a natural tools fordesribing suh omplex systems.6.6 A Comparison with the Multi-Agent Modeling ParadigmThe multi-agent paradigm is often advoated for the modelization of omplex dynamialsystems. Thus, we want to ompare the approah of topologial olletions and the multi-agent approah. To make the omparison more onrete, we turn our attention again on theneurulation example introdued in setion 1.5.Let us simplify drastially the desription of the neurulation for the sake of its simulation.We onsider the neural plate in isolation and we assume that the system evolves by disretesteps. Furthermore, we suppose that there is no ell reation nor destrution; the neural plateis modeled as a linear sequene of n ells in the plane and the left and right extremities ofthis sequene are glued together at the end of the neurula stage; see Fig. 28
Figure 28: A simpli�ation of the neurulation for simulation purposes.The hemial state sc

i(t + 1) of a ell i of the neural plate at time t + 1 depends only ofthe own ell ativity and of the signals reeived from the neighboring ells at time t. Thisan be written:
sc
i (t + 1) = hi(s

c
i (t) ; sc

i1(t), ..., s
c
ik

(t))

69

where the ells i1, ..., ik are the ells in the neighborhood of i and hi the evolution funtion ofthe ell i. Let V(t; i) denotes the set of neighbors of ell i at time t. The funtion V dependsof t beause there is a hange in the neighborhood of the ells at the extremities.Now, we have to fae the problem of building the representation the state S of the entiresystem from the hemial state of the ells. As a matter of fat, the hemial state of the ellsdoes not desribe ompletely the system. One has to desribe also its struture, that is, theorganization of the ells. We an make three hoies for the representation of the struture:� avoid the desription of the struture,� impliitly distribute the desription of the struture over the state of the ells,� expliitly speify the struture beside the hemial state.We will see that the �rst hoie is not an option when dynamial strutures ome into theplay. The seond approah is the approah taken to the multi-agent paradigm. The last oneorresponds to the MGS way of thinking.Avoiding the desription of the struture. The omplete state S of the entire systemis just a set of n hemial state sc, where n is the number of ells in the systems.This approah is not satisfatory at all beause it misses the information related to theneighboring of eah ell. The funtion V is simply ignored. But without this information weannot �ll h with the right arguments and hene, we annot ompute the trajetory of theDS. Note however that this approah is the standard one when the struture of the DS is stati:instead of a set, one use any organisation relevant to desribe the �xed organisation of theells (e.g. a vetor). In this ase, we write sc
i (t+1) = hi(s

c
1(t), ..., s

c
n(t)) and the funtion V is� hard-oded� in the funtional dependenies between the arguments of hi. It is beause thetime-dependane of V that this approah fails.The multi-agent approah: Impliit Distributed Representation of the Organiza-tion. The omplete state s of a ell orresponds to its hemial state sc together with theinformation sn relevant to desribe its neighborhood: s = (sc, sn). The omplete state S ofthe entire system is then the set of the omplete state of the ells.This approah �ts with the � multi-agent paradigm � for system modeling: eah ell is anautonomous agent interating with the others. The sn part of eah agent state orrespondsto a distributed representation of the funtion V. There is several possible drawbaks withsuh an approah:1. Although omplete, the desription of the organisation of the ells is impliit andspreaded on the sn

i . This does not ease any reasoning on the evolution of the sys-tem nor its implementation.For instane, suppose that sn
i represents the position (x, y) of the ell i in the plane. Theonnetion between the ells must be reovered by examining all the ells position, in70

ontradition with the loal nature of the evolution proess. The global san of all theell states an be avoided if we store the adjaeny relationship instead of the absoluteposition of eah ell in the plane. But the problems listed below ontinue to hold.2. The information sattered in the sn
i is redundant. For example, assuming that thespae of ells is isotropi, if sn

i indiates that ell j is a neighbor, then sn
j must indiatethat i is a neighbor. However, there is no speial way to ensure the ohereny of theredundant informations.3. The distributed representation of the funtion V is to loose. If we want to avoid themultipliation of ell types, a ell with two neighbors must be represented in the samemanner as a ell with only one neighbor. Then, there is no mehanism that prevent amisuse of suh ell.4. The behavior hi of the agent i embeeds the bookkeeping needed to ompute the infor-mation sn whih inhibits its reuse in another ontext where the hemial behavior ofthe ell is the same but with another spatial organisation.5. Most of the time, there is no hange in the organisation of the ells, only the hemialstate is hanging. However, the hanges in the organisation are handled at the samelevel as the hanges in the own ell state.6. Interation, that is the in�uene of an entity to the evolution of another, is impliit.Even if strategies �xing the interation between agents exist, the set of partiipants ofan interation is not a �rst itizen objet of the language.For instane, there is no natural objet in the basi multi-agent paradigm that representa pair of (interating) agents. This kind of entity an be modeled by a new kind ofompound agent, but the managment of the aggregation will be tedious and � by hand �(for instane, suppose that the aggregation of two agents in a pair is valid only whenthe two agents are not far one from the other). In other word, there is no support forspatial or logial aggregation.MGS: Expliit Spei�ation of the Organisation. The omplete state S of the systemsat time t onsists in the set of the sc

· (t) together with the funtion V(t, ·). That is, at time
t the sc

· (t) are organized in a olletion with topology given by V(t, ·). We reover the MGSmodel. The advantages are the following:1. The desription of the organization is expliit through the topology of the olletion.And the relationships between the evolution funtion and the topology of the olle-tion are expliitly given in the MGS rules, through the appearane of the neighborhoodoperators.It is then more easier to reason on the evolution proess. Stati analysis (throughtyping, abstrat interpretation, strutural results on homomorphisms, et.) is possible.2. The spei�ation of the evolution funtion is still loal (w.r.t. the topology, usingtransformation rules). 71

Loality is of paramount importane. As a matter of fat, it enables the appliation oftransformation rules on an unknown global struture and the onstrution/omputationof a global dynamial struture with only a stati set of �xed loal rules of hanges.3. It is more easy to speify generi h funtions that an be used with several topology.A rule in MGS spei�es an interation between several entities. For example a pattern� x, y � in the left hand side of a rule spei�es an interation between two entities.The global struture do not appear in the rule, neither the exat representation of thetopologial link between x and y. Only the logial neighboring relationship between xand y is mentioned. This makes possible the use of the same rule with several topology,f. setion 4.1.4. More generally, the separate spei�ation of the struture and the evolution rules is ane�etive way to reuse evolution rules and thus to ut down the ombinatorial explosionof the behavior × struture spei�ations.

72

7 ConlusionIn the urrent implementation, reords, sets, multisets and sequenes of elements are sup-ported. Elements are of any types, allowing arbitrary nesting. Implementation of arrays is inprogress and group-based data �elds (GBF whih generalizes funtional arrays, f. [GMS96,GM01℄) are planed in a short term. We also plan to study a generi implementation oftopologial olletions based on G-maps [Lie91℄.The perspetives opened by this preliminary work are numerous. Here are some of them.� The topologial formalization of the MGS omputation mehanism must be developped.For instane, the formal notions developped here are purely desriptive, in the sensethat there is no presription of the devie used to selet a subolletion. The situationis analogous as the desription of the lambda-aluli at the point where one has de�nedthe beta-redution as a relation: it remains, to e�etively ompute a normal form, tode�ne a strategy of redutions and to study the interation between this strategy andthe redution, et.� Furthermore, the urrent haraterization of the transformations are rather poor and weare very on�dent that they an be greatly improved. Our main goal in setion 5 was tointrodue for a reader with a bakground in omputer siene, some of the topologialnotions on whih a theory of transformations of topologial olletions an be build.� Based on the topologial bakground, it must be possible to design some onstrutionsto let the programmer speify the gluing of the new replaement subolletion into theold one. This is neessary if one want to ompute a new topology from a old one (the� drasti hanges � evoated in page 3).� We laim that � by hanging the underlying topology, one hanges the omputationalmodel �. This laim must be supported by developping the topologies needed to desribethe λ-alulus, �rst-order data�ow, petrinets, et.� Given some topology, it must be possible to de�nes new ones by standard onstrutions:several produts are possible for instane. Produts are very interesting beause theyenable the (more or less) orthogonnal desription of several (more or less) independantview points of a system.The quotient onstrutions are of partiular interest. As a matter of fat, these on-strutions an be a basis to desribe a system at several sale.Nesting is another possible approah of this problem and must be studied to enablethe uniform desription of the depth of an organization.� The omposition of transformations and the building of omposed transformations foromposed topologies must be investigated. Currently, the transformations in MGS areapplied on monoids where a rih algebra of funtions exists. We musts study if thisalgebra an be de�ned in topologial terms and then extended to others topologies.
73

� Several kinds of restritions an be put and the transformations, leading to variouskinds of pattern languages and rules. The omplexity of mathing suh patterns has tobe investigated.� We also want to develop a type system that an handle nested olletions, along thelines developed in [Ble93℄. At last but not least, we want to known if the topology spaesbuild by transformations, an be haraterized through a non standard type system.� One very important question is the e�ient implementation of MGS. One approah is todevelopp a (non standard) type system that an be further used to make the evaluationproess more e�ient or to guide the ompilation. Here are some questions: an bethe pattern expressions used to selet a subolletion typed � by omplexity of themathing �? Can we type a transformation with respet to the topology of the inputargument and the output argument? et.� We must validate the adequation of the MGS onepts to some real appliation. Twoof them are partiularly motivating: the simulation of the topologial hanges at theearly development of the embryo (see setion 1.5 and 6.6) and the ase of the Golgiformation (see setion 1.6). These two appliations are very hallenging and requireomplex topologies going far beyond monolayer �at olletion. These appliations arealso very attrative beause their potential importane for biologists.� One of the motivation behind the MGS projet is to develop a domain-spei� language(DSL) dediated to the simulation of biologial systems with a dynamial struture.DSLs are programming languages for solving problems in a partiular domain. To thisend, a DSL provides abstrations and notations for the domain at hand. DSLs are usu-ally small, and more delarative than imperative. Moreover, DSLs are more attrativefor programming in the dediated domain than general-purpose languages beause ofeasier programming, systemati reuse, better produtivity, reliability, maintainability,and �exibility. MGS must be validated on these software engineering goals. Problemslike: module systems for reusing simulation parts and apitalizing MGS ode, dediatedsemanti framework to validate MGS programs, observation and test theory of MGS pro-grams, et., are long term researh goals.
AknowledgmentsThe authors would like to thanks the members of the � Simulation and Epigenesis � workgroupat Genopole for stimulating disussions and biologial motivations. We are indebt to FranoisLetiere for the development of the 3D graphi viewer imoview. We are also very grateful toFrank Delaplae and Julien Cohen for their numerous questions, warm enouragements andthe onstant providing of sweet ookies.This researh takes plae in the Speif team of the LaMI umr 8042 CNRS, in Universityof Evry Val d'Essone, and is supported in part by the CNRS, the GDR ALP, the GDR IMPGand the Genopole/Evry. 74

A An MGS GrammarWe give in this setion the grammar used in some MGS interpreter (the C++ version at the date of april 2001).We give the grammar in a ya-like form beause it would give some ideas of the onstrutions that an beformulated in MGS (see for instane the pattern sub-language). Note however that this is only a �rst prototypeand the user an expet drasti hanges in the near futur. Already now, the funtional onstruts available inthe oaml version of the MGS interpreter are riher thant those available in the C++ version.
// Operator precedence: from the weakest to the strongest binding. See the YACC documentation

%right B_SEMI_COLON // virtual token to indicate a priority less than semi-column
%right SEMI_COLON // ;
%right A_SEMI_COLON // idem but greater
%right EQUAL // =
%right LET // :=
%right DOT_LAMBDA_MARK // virtual token for priority
%right ASSERTION_MARK // !!
%left AS // as
%right MAP FOLD // map, fold
%left EQ NEQ // ==, != or ~=
%right B_COMMA // virtual token for priority
%right COMMA3 // various sort of comma operators
%right COMMA2 //
%right COMMA // the comma ‘‘,’’
%right A_COMMA // virtual token for priority
%left INF2 // <<
%left OR AND // | or ||, & or &&
%left LT LE GT GE // < <= > >=
%left MIN MAX // min max
%left COLUMN // :
%right COLUMN2 // ::
%right APPEND // @
%left PLUS MINUS // +, -
%left TIME DIV MOD // *, /, %
%nonassoc NOT // ~
%right TL // tl
%nonassoc HD EMPTY // hd, empty
%left SIGN_OP // virtual token for the sign of a number
%left LEFT RIGHT // left, right
%nonassoc LBRACKET RBRACKET // {, }
%nonassoc LPAREN RPAREN // (,)
%nonassoc LCROCHET RCROCHET // [,]
%left DOT // .

// --- SENTENCES ---

top_level: /* nothing */ | input ;

input: def
| TERMINATOR
| input TERMINATOR
| input def ;

def: type_declaration TERMINATOR
| command TERMINATOR
| exp TERMINATOR ;

type_declaration: collection | arrow_spec | state ;

command: ... ;

75

// --- COLLECTION ---

collection: COLLECTION user_id EQUAL id ;

// --- STATE ---

state: STATE optional_id EQUAL state_body ;
state_body: id | state_body PLUS state_body | state_enumeration ;
state_enumeration: LBRACKET sid_list RBRACKET ;
sid_list: /* nothing */ | field_def | sid_list COMMA field_def ;
field_def: id | NOT id | id EQUAL exp %prec A_COMMA ;

// --- ARROW ---

arrow_spec: ARROW_SPEC ident_arrow EQUAL arrow_body ; // definition of arrow names
arrow_body: arrow_sep_begin blist arrow_sep_end ; // and arrow kinds
arrow_sep_begin: ARROW_BEGIN | LBRACKET ; // not presented here
arrow_sep_end: ARROW_END | RBRACKET ;

// --- EXPRESSION --

exp: LPAREN exp RPAREN
| ASSERTION_MARK exp
| exp SEMI_COLON exp // expression sequencing
| exp COMMA exp // Join of collections:
| exp COMMA2 exp // different kind of neighborhood
| exp COMMA3 exp // in the building of a collection
| HD exp // head
| TL exp // tail of a collection
| EMPTY exp // empty predicate
| exp INF2 exp // Scalar (integers, string, bool,) and collection Arithmetics
| exp PLUS exp
| exp TIME exp
| exp DIV exp
| exp MOD exp
| exp MINUS exp
| exp LE exp
| exp LT exp
| exp GE exp
| exp GT exp
| exp EQ exp
| exp NEQ exp
| exp AND exp
| exp OR exp
| NOT exp
| exp CONS exp
| exp APPEND exp
| MIN LPAREN exp COMMA exp RPAREN
| MAX LPAREN exp COMMA exp RPAREN
| IF exp THEN exp ELSE exp ENDIF
| exp LPAREN exp_list RPAREN // Function application
| exp LCROCHET integer RCROCHET LPAREN exp_list RPAREN // apply with optional arguments
| exp LCROCHET TIME RCROCHET LPAREN exp_list RPAREN
| exp LCROCHET blist RCROCHET LPAREN exp_list RPAREN
| MAP LCROCHET exp RCROCHET exp // abbreviations for map and fold
| FOLD LCROCHET fold_bin COMMA exp RCROCHET exp
| id LET exp // assigning an imperative local variable
| id EQUAL exp // binding (constantly) a value to a variable
| exp DOT id // accessing the neighborhood
| LEFT id
| RIGHT id
| id
| fun_exp // constants of various type...
| transformation
| record
| integer
| real
| STRING
| UNDEF
| LPAREN RPAREN COLUMN id // empty collections
| id COLUMN LPAREN RPAREN ;

exp_list: /* nothing */ | exp %prec A_COMMA | exp_list COMMA exp %prec A_COMMA ;

record: LBRACKET blist RBRACKET ;
blist: /* nothing */

| id EQUAL exp %prec A_COMMA
| id %prec A_COMMA
| blist COMMA id EQUAL exp %prec A_COMMA
| blist COMMA id %prec A_COMMA ;

fold_bin: fun_exp | MAX | MIN | PLUS | TIME | AND | OR ;

integer: INT | MINUS INT %prec SIGN_OP | PLUS INT %prec SIGN_OP ;
real: REAL | MINUS REAL %prec SIGN_OP | PLUS REAL %prec SIGN_OP ;

// --- FUNCTION ---

fun_exp: FUN optional_id optional_arg LPAREN arg_list RPAREN EQUAL exp
| LAMBDA LPAREN arg_list RPAREN DOT exp %prec DOT_LAMBDA_MARK

76

| LAMBDA optional_arg arg_list DOT exp %prec DOT_LAMBDA_MARK
| FUN error TSEP
| LAMBDA error TSEP ;

arg_list: /* nothing */ | id | arg_list COMMA id ;
optional_arg: /* nothing */ | LCROCHET blist RCROCHET ;
TSEP: SEMI_COLON | TERMINATOR ;

// --- TRANSFORMATION ---

transformation: TRANSFORM transbody
| TRANSFORM user_id optional_arg EQUAL transbody ;

transbody: LBRACKET rule_list OPT_SC RBRACKET ;

rule_list: rule
| transformation // nesting of transformations: not presented here
| rule_list SEMI_COLON rule
| rule_list SEMI_COLON transformation ;

OPT_SC: /* nothing */ | SEMI_COLON ;

// --- IDENTIFIER ---

id: ID | QID /* quoted id */ ;
user_id: ID ;
optional_id: /* nothing */ | user_id ;
ident_arrow: IDENT_ARROW ;

77

// --- RULES --

rule: pattern arrow a_exp
| user_id EQUAL pattern arrow a_exp ;

a_exp: exp %prec A_SEMI_COLON
| id COLUMN exp %prec A_SEMI_COLON ; // abstraction rule not presented here

arrow: ARROW // arrows can be abstract or qualified, not presented here
| PLUS_ARROW
| ABSTRACT_ARROW
| PLUS_ABSTRACT_ARROW
| ident_arrow
| arrow_body ;

pattern: user_id // naming
| user_id COLUMN id // guard
| LPAREN pattern RPAREN // precedence
| pattern DIV exp // guard
| pattern TIME // iteration
| pattern PLUS
| pattern AS user_id // naming
| pattern COMMA pattern // neigbhborhood
| filter_state ; // record pattern

filter_state: LBRACKET fid_list RBRACKET ;
fid_list: /* nothing */

| id
| id AS id
| NOT id
| id EQUAL id
| fid_list COMMA id
| fid_list COMMA id AS id
| fid_list COMMA NOT id
| fid_list COMMA id EQUAL id ;

78

B Full Code of the Turing+Morphogenesis ExampleWe give here verbatim the ode used to produe the �gure 13. This omplete ode uses the output failities ofMGS to write a �le, alled tmp.turing.m whih ontain theomview orders. The language theomview is used todesribe graphial 3D sene omposed of objets with automati plaement failities. We give here an extratof the produed �le:Saled{ Sale <0.1, 0.1, 0.1>Geometry Grid1{ Axis<1,0,0> GridList[Grid1{ Axis <0,0,1> GridList [Box { Size <1, 4, 16> },Box { Size <1, 4, 16> },Box { Size <1, 4, 16> },...Box { Size <1, 4, 16> },Box { Size <1, 4, 16> },Box { Size <1, 4, 16> }℄},Grid1{ Axis <0,0,1> GridList [Box { Size <1, 3.71071, 16> },Box { Size <1, 3.94391, 16> },Box { Size <1, 3.9798, 16> },...Box { Size <1, 3.87611, 16> },Box { Size <1, 3.90443, 16> },Box { Size <1, 3.65924, 16> }℄ },...℄}}The order Box is used to draw a ube. The order Grid1 is used to automatially align the element of the listGridList, following an axis. In �gure 13, the sene is rendered using a framewire mode, but one may hoseinteratively another rendering mode under graphial viewer.To understand the omposition of the �le tmp.turing.m within the MGS program, one must known that:� "file" << exp write in the �le �le the value of expression exp.� the primitive funtion print_oll takes 6 arguments: print_oll(file, col, f, s1, s2, s3):� file is an expression that evaluates to the name of the �le where to save the olletion;� col is the olletion to be saved;� f is a funtion that is applied to eah element of the olletion col: it is the value returned by fthat is written in the �le file;� the value of expression s1 is written at the very beginning;� the value of s2 is written between two elements of the olletion;� the value of s3 is written at the very end;� The primitive funtion lose is used to free any resoures used to write in a �le.� The funtion system is used to start a shell ommand from the MGS interpreter. imoview is the nameof the theomview viewer.Here is the omplete MGS ode. It begins with a transformation used to produe the initial sequene of ells,f. setion 4.10.
79

trans init ={ x => { a = 3.5 + random(1.0) -0.5, // 4.0,b = 4.0,beta = 12.0 + random(0.05 * 2.0) - 0.05,size = 16 };};;rsp := 1.0/16.0;;diff1 := 0.25;;diff2 := 0.0625;;NbCell := 18;;tore0 := init[1℄(iota(NbCell, ():seq));;The transformation Turing is the ore of the omputation. It makes use of the auxilliary evolution funtionda and db.fun da(a, b, la, ra) = rsp * (16.0 - a * b) + diff1*(la + ra - 2.0*a);;fun db(a, b, beta, lb, rb) = rsp*(a*b - b - beta) + diff2*(lb + rb - 2.0*b);;trans Turing ={ (x / x.b > 8)=> { a = x.a/2, b = x.b/2, beta = x.beta, size = x.size/2},{ a = x.a/2, b = x.b/2, beta = x.beta, size = x.size - x.size/2};(x / (left x) & (right x))+=> { a = x.a + da(x.a, x.b, (left x).a, (right x).a),b = Max(0.0, x.b + db(x.a, x.b, x.beta, (left x).b, (right x).b))};(x / ~(left x))+=> { a = x.a + da(x.a, x.b, 0, (right x).a),b = Max(0.0, x.b + db(x.a, x.b, x.beta, 0, (right x).b))};(x / ~(right x))+=> { a = x.a + da(x.a, x.b, (left x).a, 0),b = Max(0.0, x.b + db(x.a, x.b, x.beta, (left x).b, 0))};};;The transformation Turing is wrapped in several funtions used to output the results:fun minimal(x) = if (x <= 0) then 0.1 else x fi;;fun showX(x) = "Box { Size <1, "+ minimal(x.b) + ", "+ minimal(x.size) + "> }";fun showBarre(barre, t, tmax) =(print_oll("tmp.turing.m",barre, showX,("Grid1{ Axis <0,0,1> GridList [\n"),",\n\t ",
80

"℄ }");if (t ~= tmax)then ("tmp.turing.m" << ",\n\n")else ("tmp.turing.m" << "\n\n") fi);fun pre_show() =("tmp.turing.m" << "Saled{ Sale <0.1, 0.1, 0.1>\n"<< " Geometry Grid1{ Axis<1,0,0> GridList[\n\n");;fun post_show(n,) =("tmp.turing.m" << "℄ }}\n";lose("tmp.turing.m");system("imoview tmp.turing.m"));;fun evol(barre, t, tmax) =(showBarre(barre, t, tmax);if (t < tmax)then evol(Turing[iter=1℄(barre), t+1, tmax)else barre fi);fun evolve(n) = (pre_show(); evol(tore0, 0, n); post_show(n, NbCell));;evolve(180);; // run the evolution of the sequene of ells for 180 time steps!quit;;

81

82

C Review of Some Notions Related to the Group StrutureThe Group Struture. A group (G, +) is a set G with a binary operation + taking two elements of
G into a third denoted by a + b. The operation is required to satisfy the following onditions:� Assoiativity : a + (b + c) = (a + b) + c;� Existene of zero: there exists an element 0 ∈ G suh that a + 0 = 0 + a = a for every a;� Existene of negative : for any a there exists an element (−a) suh that a + (−a) = 0.If g is an element of a group G and n is an integer, then ng denotes the n-fold sum g + ... + g (the element gadded n times) and (−n)g denotes n(−g).If eah g ∈ G an be written as a �nite sum g =

P
nαgα where the gα belong to a set S, we say that theset S generates G. If the set S is �nite, then we say that G is �nitely generated by S.Group Homomorphisms. Let (G, +G) and (H,+H) be two groups. Then a funtion f : G → H is ahomomorphism i� f(a +G b) = f(a) +H f(b) for every a and b. The set of homomorphisms between G and His denoted by Hom(G, H).If f is a bijetion then we say that f is an isomorphism and that the group G and H are isomorphi.Let f and g two elements of Hom(G, H). Then we may de�ne the funtion (f +Hom(G,H) g) : G → H by

(f +Hom(G,H) g)(x) = f(x) +H g(x). It is easy to hek that (f +Hom(G,H) g) is an homomorphism. It is alsoeasy to hek that Hom(G, H) together with +Hom(G,H) is a group.Diret Produt of Groups. Of all the methods of onstruting groups, we mention here the simplest.Let (Gx)x∈X be a family of groups indexed by indies in a set X. The set X an be �nite or not. The diretprodut Q
x∈X

Gx is the group H whose underlying set is the artesian produt of the sets Gx and whosegroup operation is the omponent-wise addition.External Diret Sum of Groups. If X = {1, 2}, then we write simply G1×G2 instead of Q
i∈{1,2} Gi.If e1 and e2 are the neutral elements of G1 and G2, then the maps g1 7→ (g1, e2) and g2 7→ (e1, g2) areisomorphisms of G1 and G2 with subgroups of G1 × G2. We suppose now that the groups G1 and G2are distinguished. Usually the elements of G1 and G2 are then identi�ed with their images under theseisomorphisms, that is g1 is written for (g1, e2) and g2 is written for (e1, g2). Then G1 and G2 an be onsideredas subgroups of H = G1 × G2.In H we have g1 + g2 = g2 + g1 if gi ∈ Gi, i = 1, 2. Any element h ∈ H an be written h = g1 + g2 with

gi ∈ Gi: we say that the subgroups G1 and G2 generates H or that H is the (internal) sum of subgroups G1and G2 of H . The subgroup's intersetion G1 ∩ G2 is equal to {0} (the subgroups Gi are distinguished), andthen, the sum h = g1 + g2 uniquely de�ne the gi in Gi: we say that the sum is diret.This explain why the diret produt G1×G2 of the distinguished groups G1 and G2 is also written G1⊕G2and alled the external diret sum of G1 and G2.The notion of external diret sum an be extended to an arbitrary produt, but with a slight onstraint.Let H =
Q

x∈X
Gx the diret produt of the groups Gx. The external diret sum of the groups Gx is thesubgroup G of the diret produt H onsisting of all tuples (gx)x∈X suh that gx = 0Gx

for all but �nitelymany values of x (here 0Gx
is the zero element of Gx). The subgroup G is also alled the weak diret produtor the weak diret sum and is written: L

x∈X
Gx.Abelian Groups. If a + b = b + a for every elements a and b, then the group is said abelian orommutative. The abelian group G is free if it exists a set of generators S suh that eah g ∈ G an be writtenas a unique �nite sum. Then we say that the set of generators S is a basis. For example, the integers withthe usual addition is a free abelian group denoted by Z and the basis is the singleton {1}.If G and H are abelians, then Hom(G, H) is an abelian group too. The diret produt Q

x∈X
Gx of abeliangroups Gx is abelian. And if all the Gx are free, then their diret produt is also free. Furthermore, the diretprodut orresponds to the diret sum of modules, see below.83

Let a funtion h de�ned on the basis S = {gα} of a group G and with value in a group H , i.e. h : S → H .Then, h an be extended to an homomorphism h : G → H uniquely de�ned by h(
P

nαgα) =
P

nαh(gα). Thefuntions h and h oinide on S. Usually we make no notational di�erene between h and its linear extension
h and use h in both ase, relying on the ontext to make lear whih of these funtion is intended.Ring and Modules. A ring R is an abelian group, written additively, with a multipliation operationsatisfying two axioms:� Assoiativity : r.(s.t) = (r.s).t� Distributivity : r(s + t) = r.s + r.t and (r + s).t = r.t + s.t.If there is an element 1 in R suh that r.1 = 1.r = r for all r, then 1 is alled a unity element in R. A ring isommutative if r.s = s.r for all r and s. The only ring we onsider is the ring of integers (Z, +, .).An abelian group A has the struture of module over a ommutative ring R with unity element 1, ormore simply is a R-module, if there is a binary operation R × A → A, alled the salar multipliation, suhthat for r, s ∈ R and a, b ∈ A, we have:� r(a + b) = ra + rb� (a + b)r = ra + rb� r(sa) = (r.s)a� 1a = aHomomorphism of Module, Dual of a Module. If A and B are R-modules, a module homo-morphism is a group homomorphism ϕ : A → B suh that ϕ(ra) = rϕ(a) for r ∈ R and a ∈ A. The set ofmodule homomorphisms is denoted by HomR(A,B).If A is a module over a ring R then the set eA of all homomorphism HomR(A, R) of A to R is a R-module,if we de�ne operations by

(f + g)(a) = f(a) + g(a) for f, g ∈ eA and a ∈ A

(rf)(a) = r f(a) for f ∈ eA, a ∈ A and r ∈ RThis module is alled the dual module of A.Diret Sum of Modules. Let M and N two modules over a ring R. Consider the module onsistingof pairs (m, n) for m ∈ M, n ∈ N , with addition and multipliation by elements of R given by
(m, n) + (m′, n′) = (m + m′, n + n′) and r(m, n) = (rm, rn)This module is alled the diret sum of M and N and is denoted by M ⊕ N . The diret sum of any numberof modules an be de�ned in the same way. The sum of n opies of the module M is denoted by Mn and isalled the free module of rank n. This is the most diret generalization of a n-dimensional vetor spae.

Z-modules. Any abelian groups an be onsidered as Z-modules, by de�ning ng as the n-fold sum g +

· · ·+ g. The diret sum of these Z-modules oinides with the diret produt of the groups and HomZ(A,B) =

Hom(A, B).A one dimensional Z-module is an abelian group denoted by (Z/n, +) where n ∈ N. Formally, this groupis the quotient of Z by the subgroup nZ of the multiples of n. Intuitively, this quotient group has n elementsand eah element is a subset of Z. These sets form a partition of Z. These sets are named by one of theirmembers: the element k ∈ Z/n denotes the set {. . . , k−n, k, k+n, k+2n, . . . }. The addition law is ompatiblewith the addition on Z: p + q = p + q.The module Z/0 is isomorphi to Z and said to be a free module. The other modules Z/n, n 6= 0, arealled torsion modules.The previous Z-modules are of dimension 1 (they are generated by only one generator). Z-modules ofdimension greater than one are diret produts of 1-dimensional Z-modules.84

The Fundamental Theorem of Finitely Generated Abelian Groups. The fundamentaltheorem of abelian groups says that every �nitely generated abelian group G is isomorphi to:
G ≃ Z

n × Z/t1 × Z/t2 × . . . × Z/tqwhere ti divides ti+1 (see any standard text on groups; for a omputer oriented handling f. [Coh93℄). Thistheorem shows that the study of abelian groups splits naturally into, on one hand the study of free Z-modulesof �nite rank (i.e. Z
n), and on the other hand the study of �nite Z-modules.This isomorphism gives in some sense a � anonial representation � for G. The oe�ient ti of an abeliangroup de�ned by its generators and the relations between them (the �nite presentation of the group) an beomputed using the Smith Normal Form of the group presentation [Smi66℄. The referenes [KB79, CC82,Ili89, HHR93℄ give a lot of onsiderations about the implementation, the omplexity of the normalizationalgorithm and its optimizations.There is another suh anonial form, derived as follows. If m and n are relatively prime positive integers,then Z/m × Z/n is isomorphi to Z/mn. It follows that any �nite yli group an be written as the produtof yli groups whose orders are powers of primes. Then

G ≃ Z
n × Z/a1 × Z/a2 × . . . × Z/arwhere eah ai is a power of a prime.The Case of the Free Abelian Groups. In the ase of a free abelian group, the torsion modulesollapse to the trivial group and then a �nitely generated abelian group with n generators is simply isomorphito Z

n. In other words, an element of a free abelian group with a basis of size n, an be represented by a n-upleof integers.

85

86

Referenes[Ale82℄ P. Alexandro�. Elementary onepts of topology. Dover publiations, New-York, 1982.[Axe98℄ Ulrike Axen. Topologial Analysis using Morse theory and auditory display. PhD thesis, Uni-versity of Illinois at Urbana Champaign, 1998.[BB89℄ Gerard Berry and G. Boudol. The hemial abstrat mahine. Tehnial Report RR-1133, Inria,Institut National de Reherhe en Informatique et en Automatique, 1989.[BCM87℄ J. P. Banatre, A. Coutant, and Daniel Le Metayer. Parallel mahines for multiset transformationand their programming style. Tehnial Report RR-0759, Inria, 1987.[Ber00℄ Guntram Berti. Generi Software Components for Sienti� Computing. PhD thesis, Fakultätfür Mathematik, Naturwissenshaften und Informatik der Brandenburgishen Tehnishen Uni-versität Gottbus, 2000.[BH00℄ Ronald Brown and Anne Heyworth. Using rewriting systems to ompute left kan extensions andindued ations of ategories. Journal of Symboli Computation, 29(1):5�31, January 2000.[BL74℄ J. Bard and I. Lauder. How well does turing's theory of morphogenesis work ? Journal ofTheoretial Biology, 45:501�531, 1974.[Ble93℄ Guy Blelloh. NESL: A nested data-parallel language (version 2.6). Tehnial Report CMU-CS-93-129, Shool of Computer Siene, Carnegie Mellon University, April 1993.[BM86℄ J. P. Banatre and Daniel Le Metayer. A new omputational model and its disipline of program-ming. Tehnial Report RR-0566, Inria, 1986.[BNTW95℄ Peter Buneman, Shamim Naqvi, Val Tannen, and Limsoon Wong. Priniples of programming withomplex objets and olletion types. Theoretial Computer Siene, 149(1):3�48, 18 September1995.[CC82℄ Tsu-Wu J. Chou and George E. Collins. Algorithms for the solution of systems of linear Diophan-tine equations. SIAM Journal on Computing, 11(4):687�708, November 1982.[Coh93℄ H. Cohen. A ourse in omputational algebrai number theory, volume 138 of Graduate Text inMathematis. Springer, 1993.[CS00℄ Je�rey Chard and Vadim Shapiro. A multivetor datastruture for di�erential forms and equation.Mathematis and Computers in Simulation, (54):33�64, 2000.[FB94℄ W. Fontana and L. Buss. "the arrival of the �ttest": Toward a theory of biologial organization.Bulletin of Mathematial Biology, 1994.[FB96℄ W. Fontana and L. Buss. Boundaries and Barriers, Casti, J. and Karlqvist, A. edts,, hapterThe barrier of objets: from dynamial systems to bounded organizations, pages 56�116. Addison-Wesley, 1996.[FMP00℄ Mihael Fisher, Grant Malolm, and Raymond Paton. Spatio-logial proesses in intraellularsignalling. BioSystems, 55:83�92, 2000.[Fon92℄ Walter Fontana. Algorithmi hemistry. In Christopher G. Langton, Charles Taylor, J. DoyneFarmer, and Steen Rasmussen, editors, Proeedings of the Workshop on Arti�ial Life (ALIFE'90), volume 5 of Santa Fe Institute Studies in the Sienes of Complexity, pages 159�210,Redwood City, CA, USA, February 1992. Addison-Wesley.[Gia00℄ Jean-Louis Giavitto. A framework for the reursive de�nition of data strutures. In Proeedings ofthe 2nd International ACM SIGPLAN Conferene on Priniples and Pratie of DelarativeProgramming (PPDP-00), pages 45�55. ACM Press, September 20�23 2000.[GM01℄ J.-L. Giavitto and O. Mihel. Delarative de�nition of group indexed data strutures and approx-imation of their domains. In Proeedings of the 3nd International ACM SIGPLAN Confereneon Priniples and Pratie of Delarative Programming (PPDP-01). ACM Press, September2001.[GMS96℄ J.-L. Giavitto, O. Mihel, and J. Sansonnet. Group-based �elds. In Parallel Symboli Languagesand Systems (International Workshop PSLS'95), volume 1068, pages 209�215, 1996.87

[Hen94℄ M. Henle. A ombinatorial introdution to topology. Dover publiations, New-York, 1994.[HHR93℄ George Havas, Derek F. Holt, and Sarah Rees. Reognizing badly presented Z-modules. LinearAlgebra Appl., 192:137�163, 1993.[HP96℄ Mark Hammel and Przemyslaw Prusinkiewiz. Visualization of developmental proesses by extru-sion in spae-time. In Wayne A. Davis and Rihard Bartels, editors, Graphis Interfae '96, pages246�258. Canadian Information Proessing Soiety, Canadian Human-Computer CommuniationsSoiety, May 1996. ISBN 0-9695338-5-3.[HY88℄ J. G. Hoking and G.S. Young. Topology. Dover publiations, New-York, 1988.[Ili89℄ C. S. Iliopoulos. Worst-ase omplexity bounds on algorithms for omputing the anonial stru-ture of �nite abelian groups and the hermite and smith normal forms of an integer matrix. SIAMJournal on Computing, 18(4):658�669, August 1989.[KB79℄ Ravindran Kannan and Ahim Bahem. Polynomial algorithms for omputing the Smith and Her-mite normal forms of an integer matrix. SIAM Journal on Computing, 8(4):499�507, November1979.[Lew97℄ Benjamin Lewin. Genes (VI). Oxford University Press, 1997. 6th. edition.[Lie91℄ P. Lienhardt. Topologial models for boundary representation : a omparison with n-dimensionalgeneralized maps. Computer-Aided Design, 23(1):59�82, 1991.[Lis93℄ B. Lisper. On the relation between funtional and data-parallel programming languages. In Pro.of the 6th. Int. Conf. on Funtional Languages and Computer Arhitetures. ACM Press, June1993.[Man01℄ Vinenzo Mana. Logial string rewriting. Theoretial Computer Siene, 264:25�51, 2001.[Mi96℄ O. Mihel. Design and implementation of 81/2, a delarative data-parallel language. ComputerLanguages, 22(2/3):165�179, 1996. speial issue on Parallel Logi Programming.[Mun84℄ James Munkres. Elements of Algebrai Topology. Addison-Wesley, 1984.[Nil80℄ N. J. Nilsson. Priniples of Arti�ial Intelligene. Tioga publishing ompany, 1980.[Pau98℄ Gheorghe Paun. Computing with membranes. Tehnial Report TUCS-TR-208, TUCS - TurkuCentre for Computer Siene, November 11 1998.[Pau00℄ G. Paun. From ells to omputers: Computing with membranes (p systems). In Workshop onGrammar Systems, Bad Ishl, austria, July 2000.[PS93℄ Rihard S. Palmer and Vadim Shapiro. Chain models of physial behavior for engineering analysisand design. Researh in Engineering Design, 5:161�184, 1993. Springer International.[Rém92℄ Didier Rémy. Syntati theories and the algebra of reord terms. Tehnial Report 1869, INRIA-Roquenourt, BP 105, F-78 153 Le Chesnay Cedex, 1992.[Sha90℄ Igor' Shafarevih. Basi Notions of Algebra. Springer, 1990.[Smi66℄ D. Smith. A basis algorithm for �nitely generated abelian groups. Math. Algorithms, 1(1):13�26,January 1966.[Ton74℄ Enzo Tonti. The algebrai-topologial struture of physial theories. In P. G. Glokner and M. C.Sing, editors, Symmetry, similarity and group theoreti methods in mehanis, pages 441�467,Calgary, Canada, August 1974.[Ton76℄ Enzo Tonti. The reason for analogies between physial theories. Appl. Math. Modelling, 1:37�50,June 1976.[VN66℄ J. Von Neumann. Theory of Self-Reproduing Automata. Univ. of Illinois Press, 1966.
88

S

M
G

