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Abstra
tWe present the �rst results in the development of a new de
larative programminglanguage 
alled MGS. This language is devoted to the simulation of biologi
al pro
esses,espe
ially those whose state spa
e must be 
omputed jointly with the running state ofthe system (for instan
e, in morphogenesis).MGS proposes a uni�ed view on several 
omputational me
hanisms. Some of themare initially inspired by biologi
al or 
hemi
al pro
esses (Gamma and the CHAM, Lin-denmayer systems, Paun systems and 
ellular automata). They share the property ofspe
ifying lo
al transformations in spa
e and time.The basi
 
omputation step in MGS repla
es in a 
olle
tion A of elements, some sub-
olle
tion B, by another 
olle
tion C. The 
olle
tion C is fun
tion solely of B and itsadja
ent elements in A. The pasting of C into A−B depends on the shape of the involved
olle
tions. This step is 
alled a transformation.The organisation of the elements into the 
olle
tions is viewed from a topologi
al view-point. A formal framework to spe
ify this notion of topologi
al 
olle
tions is proposed.By 
hanging the topologi
al stru
ture of the 
olle
tion, the underlying 
omputationalmodel is 
hanged.The spe
i�
ation of the 
olle
tion to be substituted 
an be done in many ways. Wepropose here a pattern language based on the neighborhood relationship indu
ed by thetopology of the 
olle
tion. Several features to 
ontrol the transformation appli
ations arethen presented. KeywordsTopologi
al 
olle
tion, transformation, de
larative programming language, simulationof biologi
al pro
esses, dynami
al systems, dynami
al stru
ture, Gamma, CHAM, P sys-tem, L system, 
ellular automata, rewriting, rule based programming, 
ombinatorial al-gebrai
 topology, 
hain 
omplex, 
hain group.
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1 MotivationsWe want to developp a framework dedi
ated to the simulation of dynami
al systems witha dynami
al stru
ture. The appli
ation area we have in mind is the simulation of somebiologi
al pro
esses, espe
ially those whose state spa
e must be 
omputed jointly with therunning state of the system. This te
hni
al report is organized as follow:Se
tion 1 gives our motivations. After a very brief presentation of the notions related tothe dynami
al systems, we introdu
e the notion of dynami
al stru
ture through someexamples.Se
tion 2 sket
hes an uni�ed framework to des
ribe dynami
al system with a dynami
 stru
-ture. The notions of 
olle
tion, sub
olle
tion and transformation are des
ribed.Se
tion 3 
ontains a brief des
ription of the MGS programming language. This languageimplements a subset of the previous ideas.Se
tion 4 illustrates the MGS language through paradigmati
 examples.Se
tion 5 presents the �rst development of a formal des
ription of the MGS 
onstru
tions,using mathemati
al notion developped in the �eld of algebrai
 topology. Our main goalin this se
tion is to introdu
e some of the topologi
al notions upon whi
h a theory oftransformations 
an be build.Se
tion 6 makes a 
omparison with other approa
hes: the Gamma language and the CHAM,Lindenmayer systems, Paun systems and 
ellular automata. A 
omparaison with theapproa
h of multi-agent systems, often advo
ated in the simulation of 
omplex dynam-i
al systems, is also developped.Se
tion 7 
on
ludes this report by giving some dire
tions opened by this work.1.1 Dynami
al Systems and their State Stru
tures.A dynami
al system (or DS in short) 
orresponds to a phenomenon that evolves in time.The phenomenon is lo
ated on a system 
hara
terized by � observables �. The observablesare 
alled the variables of the system, and are linked by some relations. The value of thevariables evolves with the time. The set of the values of the variables that des
ribes thesystem 
onstitutes its state. The state of a system is its observation at a given instant. Thestate has often a spatial extent (the speed of a �uid in every point of a pipe for example).The temporal sequen
e of state 
hanges is 
alled the traje
tory of the system.Intuitively, a DS is a formal way to des
ribe how a point (the state of the system) movesin the phase spa
e (the spa
e of all possible states of the system). It gives a rule telling uswhere the point should go next from its 
urrent lo
ation (the evolution fun
tion). Thesenotions are illustrated in Fig.1.We are interested in the simulation of su
h systems. This requires the spe
i�
ation of thesystem state and the evolution fun
tion. This spe
i�
ation 
an be very di�
ult to a
hieve
1
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.
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12 Evolution in the phase spa
e (x, y)The three 
urves 
orrespond to the 
y
li
 evolu-tion of the system starting from three di�erent ini-tial 
onditions. A point in this plot 
orrespondsto a state (x, y). A 
urve 
orresponds to the evo-lution (x, y)(t). The periodi
ity of the traje
to-ries of x and y gives a 
losed 
urve. There is afourth 
urve redu
ed to a �xed point. The imageby the evolution fun
tion of this point is itself.This point is 
hara
terized by dx/dt = dy/dt = 0(no 
hange).Figure 1: Evolution of a predator-prey system (a DS with a stati
 stru
ture).The system is 
hara
terized by two variables: x 
orresponds to the number of predators and y to the numberof preys in some e
ologi
al system. The number of preys 
hanges be
ause of the growth of the populationand be
ause the preys are eaten by the predators. The number of births is proportional to the number ofpreys and the de
rease is proportional to the number of prey-predator en
ounters, whi
h is itself proportionalto the produ
t xy. The number of predators de
reases be
ause the 
ompetition between predators and thein
rease is proportional to the 
han
e of prey-predator en
ounters. The resulting di�erential equations spe
ifythe evolution fun
tion. They 
an be integrated to plot the traje
tory of x and y (top pi
ture) and the stateevolution (bottom pi
ture). The stru
ture of the system is stati
 in the sense that the state of the system isalways des
ribed as an element of R
2.
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be
ause of the 
omplexity of the des
ription of the phase spa
e and of the evolution fun
tion.However, more we know about the phase spa
e, more we know about the DS behavior. Forexample, if the phase spa
e is �nite, every traje
tory is �nally 
y
li
.Very often the phase spa
e has some stru
ture and this stru
ture 
an be used to simplifythe des
ription of the state and its evolution and to gain some knowledge about the system.For example, one may spe
ify the evolution fun
tion hi for ea
h observable oi and re
over theglobal evolution fun
tion h as a produ
t of the � lo
al � hi.Standard DS exhibit a stati
 stru
ture, that is, the exa
t phase spa
e of the DS 
an beknown stati
ally before the simulation. For instan
e, in the example of a �uid �owing througha pipe, sin
e the geometry of the pipe is not subje
t to 
hange, the stru
ture of the stateis not a fun
tion of time (and the phase spa
e 
orresponds to the ve
tor �elds on the stati
volume of the pipe).1.2 DS with a Dynami
al Stru
tureThe a priori determination of the phase spa
e 
annot always be done. This situation is usualin biology [Fon92, FB94, FB96℄ for instan
e in the modeling of plant growing, in develop-mental biology, integrative 
ell models, protein transport and 
ompartment simulation, et
.This a

ount for the fa
t that the stru
ture of the phase spa
e must be 
omputed jointly withthe running state of the system. In this 
ase, we say that the DS has a dynami
al stru
ture.Often, the des
ription of DS with a dynami
al stru
ture is espe
ially hard.In this kind of situation, the dynami
 of the system is often spe
i�ed as sev-eral lo
al 
ompeting transformations o

urring in an organized set of simplerentities. The organization of this set is subje
t to possible drasti
 
hanges inthe 
ourse of time and is a plain part of the state of the DS.A simple example is given in �gure 2. This example is simple bea
use the stru
ture of thestate at timet does not depend of the previous traje
tory (the states at time t′ < t). However,the usual 
ases are mu
h more intri
ated and di�
ult to spe
ify.This is best shown on some examples. The following examples play a 
entral role in themotivations of the framework presented in se
tion 2 and were very in�uential on the 
urrentwork. They exhibit some key properties we want to emphasize and pre
ise the kind of entities,organizations and transformations we have in mind. They outline some important featuresneeded for a language devoted to the simulation of DS with a dynami
al stru
ture.The reader not interested by our motivations, may omit the rest of this se
tion and godire
tly to se
tion 2 page 11.1.3 Chemi
al Rea
tionsSuppose that we have a system 
onsisting in two mole
ules of type a and one mole
ule of type
b �oating in a test tube at time t. The state of the system 
an be represented by the multiset

3
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Figure 2: DS with a simple dynami
al stru
ture. The state of the system is a ve
tor of integers.If at time t the state st is an element of Z
q, then the state st+1 at time (t + 1) is an element of Z

q+1
omputed as follows. The ith element of st+1 is equal to the ith element of st and the (q + 1)thelement of st+1 is equal to the sum of all previous elements. It is easy to see that the set St ofthe possible states at time t is Z
t if S1 = Z. Then, the set S of all possible states (at any time) is

S = Z
∗ = Z

1 ∪ Z
2 ∪ ... ∪ Z

n ∪ .... This DS has a dynami
al stru
ture be
ause St 6= S. It is alwayspossible to 
onsider S instead of the sets St but a lot of informations on the system stru
ture is lost.In this example, the evolution fun
tion h is simple to spe
ify and the fun
tion H that gives the set
St+1 from st ∈ St is very simple: H(st) does not depend on the value st but only on St. Then itis easy to infer the set S as ⋃

Ht(Z). Se
tions 1.3 to 1.7 give some examples where the fun
tion Hreally depends of the pre
ise value of the state.
{| a, a, b |}. We suppose that one a and one b 
an rea
t together to give two c (rea
tion α) andthat two c rea
t together to give one d (rea
tion β) only in the presen
e of a (a is a 
atalyst).Starting from {| a, a, b |} a rea
tion α may o

ur. So, at time t+1 the state of the system isrepresented by {| a, c, c |}. At time t + 1 there is no more subpart {| a, b |} in the system. Thenthe evolution rule α 
annot be applied anymore. However, the rea
tion β may be applied togive a new state {| a, d |}.At this point no more rea
tion 
an o

ur and we 
an say that the system has rea
hed a�xpoint (or an equilibrium). We 
an resume the traje
tory of the system by:

{| a, a, b |}t
α
−→ {| a, c, c |}t+1

β
−→ {| a, d |}t+2We have de
ided to model the state of the system 
rudely by the multiset of mole
ulespresent in the test tube. Then, the point is that the evolution of the system 
annot bedes
ribed by evolution rules linked solely to one basi
 system element a, b, c or d. In this
ase, it is natural to link the evolution rule, a 
hemi
al rea
tion a + b → c + c, to a subpart

{| a, b |} of the whole system. Note that rea
tion β 
an be modeled as 
onsuming one a andprodu
ing one a: c + c + a→ d + a and then this rule 
an be linked to the subpart{| c, c, a |}.However, a is left un
hanged and it is perhaps more natural to say that the rule c + c→ d islinked with subpart {| c, c |} but holds only if there is some a.With this parti
ular 
hoi
e of representation, the subparts of the system are 
hangingwith the appli
ation of a rule. At time t + 1 there is no more subpart {| a, b |} in the systemand the evolution rule α 
annot be applied anymore. At time t + 2 there is no more subpart
{| a, b |} nor subpart {| a, c, c |} and no rule at all 
an apply. Although the phase spa
e 
an be
hara
terized uniformly as a multiset, the number of elements of this multiset is 
hanging, aswell as the evolution rules that 
an be used to make the system evolves. This is why we say
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that this DS exhibits a dynami
 stru
ture.Obviously another 
hoi
e of state representation avoids this burden. For instan
e, thesystem 
an be modeled as four numbers quantifying the number of mole
ules a, b, c and dpresent in the test tube. With this representation, the phase spa
e is uniformly N
4. How-ever, we insist here on this parti
ular model where ea
h individual mole
ule is expli
itlyrepresented. The reader a

ustomed to the usual 
hemi
al models 
an be disturbed by thispoint of view, but one may imagine a situation where a mole
ule 
annot be abstra
ted by aninteger and requires its expli
it appearan
e in the model. More generally, it does not alwaysexist a representation of the system state that avoids the 
hange of the phase spa
e, or thisrepresentation is not always desirable.The points we want to emphase, are:� The evolution of the system is spe
i�ed as a set of evolution rules.� An evolution rule gives the evolution of a subpart of the system.� We insist that the subparts subje
t of these rules are in general not redu
ed to only oneelement.1.4 Game of LifeThe game of life is a parti
ular type of 
ellular automata (
f se
tion 6.4 for a more generaldes
ription of 
ellular automata). It 
an be des
ribed in the following way. Ea
h element ofan array represents a 
ell in two possible states: dead or alive. A dead 
ell surrounded by3 alive neighbors be
omes alive. An alive 
ell surrounded by less than three alive neighborsbe
omes dead from isolation. An alive 
ell surrounded by more than three living neighborsdies by starvation.In this example, one sees that the global state of the system is des
ribed by the state ofall the 
ells. The evolution fun
tion for one 
ell depends on both the 
urrent state of the
ell and the state of the neighbors. However, in the 
ontrary of the pre
eding example, thesubpart of the system whi
h evolves is the 
ell x alone, and not the 
ell x together with theother arguments of the evolution fun
tion (the neighbors). Indeed, the neighbors evolve forthemselves, even if their 
urrent state intera
t in the evolution of other 
ells. Put in otherwords, the states of the neighbors are not 
onsumed by the evolution of 
ell x.This is perhaps better explained by 
ontrast with an alternative of 
ellular automata:latti
e gas automata. In this formalism, a set of mole
ules moves in a grid. So, a 
ell ina grid has a state indi
ating if the 
ell is empty or if it 
ontains one (or several) mole
ulemoving in a given dire
tion. Mole
ules intera
t when they meet in a 
ell. Figure 3 gives someexamples of rules. In opposition with the game of life approa
h, a rule spe
i�es the evolutionof simultaneously several 
ells. However, the evolution fun
tion is lo
al in the sense that theintera
ting 
ells are 
onne
ted.The two examples stress the spa
e organization of the elements of the system. Beingpresent at the same time (in a 
hemi
al solution as in the pre
eding example) is not asu�
ient 
ondition to intera
t. They must moreover be neighbors. However, this 
on
ept of
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Figure 3: Some rules for a latti
e gas automata.neighborhood is �xed here on
e and for all, be
ause the evolution of a 
ell gives again a 
ellin the same pla
e (or in latti
e gas automata, the evolution of a subpart gives a subpart withexa
tly the same shape).The points whi
h we want to underline are the followings:� The elements of the system have a strong spatial organization, whi
h de�nes a 
on
eptof neighborhood.� Two elements 
an only intera
t if they share a neighbor relationship.� The intera
tion spe
ifying the evolution of an element does not ne
essarily des
ribe theevolution of the parti
ipating neighbor elements.1.5 EmbryogenesisThe pre
eding example shows a strong spatial organization of the entities whi
h 
ompose thedynami
al system (at least 
ompared with the 
hemi
al solution). This spatial organizationis however stati
. Here an example, drawn from biology, whi
h needs intrinsi
ally a dynami
spatial organization.During the development of an embryo, several domains of 
ells 
hange their shapes. Forinstan
e, the neural tube is formed dorsally in the embryoni
 development of Vertebrates bythe joining of the 2 upturned neural folds formed by the edges of the e
todermal neural plate,giving rise to the brain and spinal nerve 
ord; see �gure 4.In general, the morphogenesis of biologi
al systems is a 
onsequen
e of the lo
al evolutionof 
ells like growing and proliferation, mobility, di�erentiation and apoptosis (programmateddeath of 
ells). There is no 
entralized 
ontrol, only the di�usion of 
hemi
al signals from a
ell to its neighbors and the own internal evolution of the 
ell.
Figure 4: During the neurula stage, the neural plate is folded to shape a tube.
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The state of the entire system 
annot be redu
ed to the set of the state of the 
ells be
ausesu
h representation misses the information related to the neighborhood of ea
h 
ell. And theneighborhood of a 
ell 
hanges in time. For example, some 
ells on the boundary of the neuralplate are glued together and be
ome internal 
ells at the end of the neurula stage.The neighborhood of ea
h 
ell is of paramount importan
e to evolution of the systembe
ause of the interplay between the shape of the system and the state of the 
ells. Theshape of the system has an impa
t on the di�usion of the 
hemi
al signals and hen
e on the
ells state. Re
ipro
ally, the state of ea
h 
ell determines the evolution of the shape of thewhole system. This example if further developped in se
tion 6.6.The 
hanges in the boundary of a 
ell are due to 
ell mobility, apoptosis and proliferation.These 
auses are � internal � to the DS. The 
hanges in the neigborhood of a 
ell 
an also be
aused by a 
hange in the environment (the 
onditions outside the system), e.g. a 
hange inthe geometry of the embedding spa
e, the en
ounter with an obsta
le or an obstru
tion, et
.See for example the 
hange of growth in a plant en
ountering an obsta
le, in �gure 5.In the neurula stage and in the plant growth, the intera
tions are still done betweenneighboors elements. The 
ells at the boundary of the neural plate be
ome neighbors whenthe plate is folded, and the growth unit of a plant be
omes a neighbor of a wall or anothergrowth unit. The evolution is then still spe
i�ed through lo
al rule, even if the stru
ture ofthe DS is 
hanging. The global 
hange in the DS stru
ture, is the � sum � of the lo
al 
hanges.The points we want to emphasize are:� The stru
ture of the DS, that is, the organization of its elements, may depend of externalor internal fa
tors.� However, the evolution of the system is always spe
i�ed through lo
al rules. It is theresult of all the lo
al 
hanges that gives the global 
hange of the system.

Figure 5: Plant growth in presen
e of obstru
tion. This �gure represents the growth of a plant,as it 
an be modeled by a L system (
f. se
tion 6.3), using the repli
ation of a growth unit with avariation in size and orientation. However, � external � fa
tors disturb the repli
ation pro
ess. Forexample, walls put 
onstraints or stop the repli
ation. And even the plant itself makes obstru
tionsto its own development.
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1.6 Protein transport and Golgi FormationIn the previous examples, the system is de
omposed in atomi
 entities (mole
ules, growthunits) or homogeneous entities (
ells with a more or less 
omplex state). However, thede
omposition of the system is not always restri
ted to one level and 
an be further re�ned.Here we sket
h an example whi
h is of great importan
e for the simulation of the 
ellfun
tioning: the pro
esses by whi
h proteins are physi
ally transported through membranoussystems to the plasma membrane or other organelles, or from the 
ell surfa
e to organelleswithin the 
ell. A proposed me
hanism 
onsists of small membranous vesi
les. A solubleprotein is 
arried within the lumen of a vesi
le, and an integral membrane protein is 
arriedwithin its membrane. The �gure 6 illustrates the nature of the budding and fusion events bywhi
h the vehi
les move between adja
ent 
ompartments.
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vesicle buds from membrane

vesicle fuses with target compartment

coat is removed

cytosol

vesicle contacts target membrane

target compartment

vesicle released with the coat proteins

cytosol

donor compartment

Figure 6: Protein tra�
king. Membranes vesi
les bud from a donor 
ompartment and are sur-rounded by 
oat proteins. The 
oated vesi
le binds to a target 
ompartment, is un
oated, and fuseswith the target membrane, releasing its 
ontent. (From [Lew97, 
h. 34: Protein Tra�
king℄.)To simulate these me
hanisms, we must represent the 
ompartment volumes, the mem-brane surfa
es and the proteins (whi
h may be assimilated to points). In addition to thegeometry of these entities, one must represent the density of the proteins on the surfa
es
oat (it is hypothesized that the 
urvature of the membrane depends of the presen
e of someproteins in the 
oat), or of vesi
le in a volume (e.g. to 
ompute the 
han
e of a vesi
le toen
ounter the target membrane and the release level of proteins). In addition, there are somerea
tions between proteins and me
hani
al e�e
ts on the membrane and vesi
le. Furthermore,membrane may be polarized.
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This example exhibits a very 
omplex spatial organization. The system 
an be de
om-posed in 
ompartments and vesi
les. Vesi
les are dynami
ally 
reated (it is also hypothesizedthat some 
ompartment, like the Golgi, may be 
reated as the dynami
 equilibrium of ag-gregations/separations of the vesi
les released by the endoplasmi
 reti
ulum). A vesi
le or a
ompartment 
an be further re�ned into a membrane, a lumen (the volume inside the 
om-partment) and eventually a 
oat. A 
ompartment may in
lude other 
ompartments, et
. Thetopology implied by the representation of these entities is tridimensional (
ompartments),bidimensional (membranes) and zero dimensional (mole
ules). Some models also use tenseg-rity stru
tures to explain the me
hani
s of the membranes. Then, one-dimensional stru
turesmust be introdu
ed to represent the 
ytoskeletal �laments that allow the 
ell to resist thedistortion of shape when a me
hani
al stress is applied to it. Obviously, the intera
tion thatmust be des
ribed depends of the dimension of the entity: for instan
e, a �ow of mole
ules
an be 
on
eived only through a membrane boundary between two 
ompartments, not be-tween a �lament and another mole
ule; 
onservation laws depend on the topologi
al natureof the entities, et
.The moral of the story is that the de
omposition of a system may exhibit a dynami
al
omplex organization, requiring the des
ription of arbitrary 
hanging topology. The 
ompletedes
ription of the system must in
lude several heterogeneous intera
ting viewpoints (geom-etry of the system, 
hemi
al a
tivity, me
hani
al state, ele
tri
al a
tivity, et
.) at severallevels.1.7 Cell DivisionSuppose that we have a system 
onsisting in one 
ell c �oating in a test tube at time t. The
ell c is des
ribed by a state s. This 
ell is in a state su
h that it divides. At time t + 1we have 2 
ells c1 and c2 with states s1 and s2 in the test tube. The point is that it wouldbe very irrelevant to say that c1 (resp. c2) is the 
ell c in the new state s1 (resp. s2). Asa matter of fa
t1, the division pro
ess is supposed to be symmetri
 and it will be arbitraryto identify one of the 
ell at time t + 1 as � the previous 
ell � and the others as the � new,
hildren 
ell �. In other word, when an amoeba divides, it is irrelevant to ask whi
h one ofthe two 
orresponds to the initial amoeba.The point we want to fo
us is a little subtle: 
onfronted to a DS with a stati
 stru
ture,it is easy to de
ompose the system in �xed parts, to atta
h some behavior to these parts andto 
on
eive that these parts have a well de�ned identity in time. This is no longer true whenthe parts of the system are 
hanging, be
ause it will be very arbitrary to identify one partin the 
ourse of the time. This does not mean that only a global des
ription is possible. Itmeans that the right unit of des
ription are the intera
ting parts and that the 
orrespondingde
omposition 
hanges in time. We 
ome ba
k to the problem of identifying a de�nite partsamong the time in se
tion 6.6 when we 
ompare the MGS approa
h with the multi-agentparadigm).1We suppose that there is no spe
ial information in the state to uniquely identify the 
ell. The stru
tureof the 
ell state 
onsists solely in the information needed to des
ribe the fun
tioning of the 
ell and 
ells areindistinguishable by their fun
tioning. 9



1.8 Summary of the ExamplesThe previous examples were very in�uential for our motivations. To summarize, we are inquest of a programming language dedi
ated to the simulation of dynami
al systems with adynami
al stru
ture. Su
h a language must take into a

ount the following features:1. The evolution of the system is spe
i�ed as a set of evolution rules.2. An evolution rule gives the evolution of a subpart of the system.3. We insist that the subparts subje
t of these rules are in general not redu
ed to only oneelement.4. The elements of the system have a strong spatial organization, whi
h de�nes a 
on
eptof neighborhood.5. Two elements intera
t only if they are neighbors (rules are lo
al).6. The intera
tion spe
ifying the evolution of an element does not des
ribe ne
essarily theevolution of the parti
ipating neighbor elements.7. The stru
ture of the DS, that is, the organization of its elements, may depend of externalfa
tor, or internal ones.8. However, the evolution of the system is always spe
i�ed through lo
al rules. It is thesum of all lo
al 
hanges that gives the global 
hange of the system.9. The de
omposition of a system may exhibit a dynami
al 
omplex organization, requiringthe des
ription of arbitrary 
hanging topology.10. The 
omplete des
ription of the system must in
lude several heterogeneous intera
t-ing viewpoints (geometry of the system, 
hemi
al a
tivity, me
hani
al state, ele
tri
ala
tivity, et
.) at several levels.11. The parts of the system does not have a remanent identity.
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2 MGS Basi
 Ideas2.1 The Con
ept of Transformation in a Colle
tionReturning to the idea expressed in se
tion 1.2 page 3, our goal is to provide a general sup-port for the notions of � organized set � and � lo
al 
ompeting transformations � that arise inthe previous examples. From this point of view, the previous examples share the following
ommon 
hara
teristi
s.Dis
rete spa
e and time. The stru
ture of the DS state 
onsists of a dis
rete 
olle
tion ofelements. We 
all 
olle
tion a set of elements with some � organization � (to be 
lari�edlater). This dis
rete 
olle
tion evolves in a sequen
e of dis
rete time steps2.If the state of a system 
onsists in a 
olle
tion, the elements in this 
olle
tion do nothave a remanent identity in time be
ause the organization of the 
olle
tion may 
hangewith the stru
ture of the system. In other words, the 
olle
tion redu
es to a 
olle
tionof values.It is tempting, and we will do so, to separate the � shape � (i.e. the organization) of the
olle
tion and its 
ontent (the values).Complex Organization. Several kinds of organizations (of values) are used in programminglanguages and give raise to several data stru
tures: sets, multisets (or bags), sequen
es,arrays, trees, terms, et
. However, the des
ription of a DS often exhibits more 
omplexorganizations. For instan
e, the organization of a DS is often based on the 3-dimensionaltopologi
al stru
ture of the physi
al entities in the system.Temporally lo
al transformation. The 
omputation of a new value in the new state de-pends only on values 
omputed for a �xed number of pre
eding steps, and usually justone step.Spatially lo
al transformation. The 
omputation of a new 
olle
tion is done by a stru
-tural 
ombination of the results of more elementary 
omputations involving only a smalland stati
 subset of the initial 
olle
tion.� Small and stati
 subset � makes expli
it that only a �xed subset of the initial elementsare used to 
ompute a new element value.� Stru
tural 
ombination �, means that the elementary results are 
ombined into a new
olle
tion, irrespe
tively of their pre
ise value. The global organization of the new
olle
tion results of the 
ombination of these lo
al 
hanges.2Independantly of the dis
rete or 
ontinuous nature of the entities that have to be represented in themodeled systems, they must be dis
retized �nally for their 
omputer representation. We have de
ided todelegate this problem upstream of the programming. It implies that there is no spe
ial feature embedded intoour framework dedi
ated to the expli
it support of 
ontinuous entities (like ODE or PDE solvers, 
ontinuoustime representation, et
.). For instan
e, the system of two di�erential equations of �gure 1 must �rst beingdis
retised (e.g., as a �nite di�eren
e s
heme xt+1 = hx(xt, yt) and yt+1 = hy(xt, yt)) and these dis
reteequations are the base of the 
orresponding simulation program.
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Considering these 
hara
teristi
s, we propose to idealize the des
ription of a DS evolution bythe following abstra
t 
omputational me
hanism:1. a sub
olle
tion A is sele
ted in a 
olle
tion C;2. a new sub
olle
tion B is 
omputed from the 
olle
tion A;3. the 
olle
tion B is substituted for A in C.This pro
essus is pi
tured in Fig. 7. We 
all these three basi
 steps a basi
 transforma-tion of the 
olle
tion. A transformation, without the � basi
 � quali�er, 
onsists in severalnon intera
ting basi
 transformations applied in parallel to a 
olle
tion. A transformation
orresponds to one evolution step of the DS. Then, the iteration of transformations builds theentire DS traje
tory, 
f. Fig. 8.In addition to the spe
i�
ation of the underlying organization, the de�nition of a basi
transformation requires the spe
i�
ation of the sub
olle
tion A and the repla
ement B. Thisspe
i�
ation de�nes a rule and must adapt several 
onstraints and variations. We proposeto base the spe
i�
ation of the organization and of these 
onstraints on topologi
al 
on
epts.For example, in the game of life, the value of a 
ell c at time t + 1 depends on the valueof the neighboring 
ells at time t. If we identify the value of the 
ell c at time t with the
y = f(x’)x

T

BAC T(C)Figure 7: A basi
 transformation of a 
olle
tion. Colle
tion C is of some kind (set, sequen
e,array, 
y
li
 grid, tree, term, et
). A rule T spe
i�es that a sub
olle
tion A of C has to be substitutedby a 
olle
tionB 
omputed from A. The right hand side of the rule is 
omputed from the sub
olle
tionmat
hed by the left hand side x and its possible neighbors x′ in the 
olle
tion C.
T T(T(C))T(C)C

...

Figure 8: Transformation and iteration of a transformation. A transformation T is a set ofbasi
 transformations applied syn
hronously to make one evolution step. The basi
 transformationsdo not intera
t together. A transformation is then iterated to build the su

essive states of the system.
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sub
olle
tion A, then the 
olle
tion B must be 
omputed not only from A but also from theneighbors of A in the 
olle
tion C.This abstra
t des
ription of one evolution step of a 
olle
tion makes possible the uni�
a-tion in the same framework of various 
omputational devi
es. The tri
k is just to 
hange theorganization of the underlying 
olle
tion. In se
tion 6 we try to reformulate several paradigms(like the CHAM, P systems, L systems and 
ellular automata), as transformations of some
olle
tions.2.2 Colle
tions as Spa
esAs a matter of fa
t, it is very natural to see these 
olle
tions as a set of pla
es or positionslabeled by a value. Then, the organization of a 
olle
tion is seen as a topology de�ningthe neighborhood of ea
h element in the 
olle
tion and also the possible sub
olle
tions. Tostress the importan
e of the topologi
al organization of the 
olle
tion's elements, we 
all themtopologi
al 
olle
tion .A sub
olle
tion is a set of 
onne
ted elements. If the element x in a 
olle
tion is a neighborof the element y, we write x, y. Additional 
onditions 
an be put to 
onstrain the possiblesub
olle
tions. A sub
olle
tion has itself a topology inherited from the main 
olle
tion. Thetopology is used to 
onstrain the possible transformations and the dependan
es between the
olle
tions A, B and C.For example, one may de
ide that neighbors of an element in a sequen
e are its twoadja
ent elements (ex
ept for the �rst and the last element in the sequen
e whi
h have onlyone neighbor). A subsequen
e C′ of C is a 
onne
ted subset of the elements of C. This meansthat the possible subsequen
es of a sequen
e ℓ are the intervals of ℓ. Additional 
onditions
an be put to 
onstrain the possible sub
olle
tions. For instan
e, one may want to 
onsideronly the sequen
e pre�xes or the sequen
e su�xes for the sub
olle
tions, but no arbitraryintervals.This topologi
al approa
h to formalizing the notion of 
olle
tion is part of a long termresear
h e�ort [GMS96℄ developed for instan
e in [Gia00℄ where the fo
us is on the substru
-ture, or in [GM01℄ where a general tool for uniform neighborhood de�nition is developed.In this resear
h program, a data stru
ture is viewed as a spa
e where some 
omputationo

urs and moves in this spa
e. The notion of neighborhood is then used to 
ontrol the
omputations. In this report, we propose a formal framework in se
tion 5 that fo
uses onthe transformation of topologi
al 
olle
tions, where the basi
 
omputation me
hanisms is thesubstitution of sub
olle
tions.The topology needed to des
ribe the neighborhood in a set or a sequen
e, or more generallythe topology of the usual data stru
tures, are fairly poor. They are sket
hed in se
tion 6.So, one may ask if the formal ma
hinery developped in se
tion 5 is worthwhile. A
tually,the previous examples show the need of 
omplex topologies. And more importantly, thetopologi
al framework uni�es various situations. Our ultimate goal is to develop a generi
implementation based on these notions.
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2.3 The MGS Proje
t: Modeling Biosystems with a Dynami
al Stru
turewith Topologi
al Colle
tions and their TransformationsThese ideas lead to the development of an experimental programming language 
alled MGS.MGS is the vehi
le used to investigate general notions of 
olle
tions and transformations, andto study their adequa
y to the simulation of various biologi
al pro
esses with a dynami
alstru
ture.We will show in se
tion 6 that the notion of topologi
al 
olle
tion and their transformationare able to take into a

ount in a same unifying framework several biologi
ally and bio
hem-i
ally inspired 
omputational models, namely: Γ and the CHAM, P systems, L systems and
ellular automata (CA). We do not 
laim that topologi
al 
olle
tion are a useful theoreti
alframework en
ompassing all these formalisms. We advo
ate that few notions and a singlesyntax 
an be 
onsistently used to allow their merging for programming purposes.In the 
urrent MGS implementations sets, multisets and sequen
es of elements are sup-ported3. This is already a step forward in the quest of a good programming language dedi
atedto the simulation of biosystems with a dynami
al stru
ture. Indeed, even if we restri
t to thesedatatypes, MGS allows some kind of rewriting on multisets and sequen
es. This paradigm isadvo
ated in re
ent papers for the modeling of biologi
al systems [Man01, FMP00℄. To quote4Fisher et al. [FMP00℄:� a biologi
al systems is represented as a term of the form t1 + t2 + · · · + tnwhere ea
h term ti represents either an entity or a message [signal, 
ommand,information, a
tion, et
.℄ addressed to an entity. Computation, [i.e., simulationof the physi
al evolution of the biosystem℄ is a
hieved through term rewriting,where the left hand side of a rule typi
ally mat
hes an entity and a messageaddressed to it, and where the right hand side spe
i�es the entity's updated state,and possibly other messages addressed to other entities. The operator + that joinsentities and messages is asso
iative and 
ommutative, a
hieving an � asso
iative
ommutative soup �, where entities swim around looking for messages addressedto them. [...℄This asso
iative 
ommutative soup allows obje
t to intera
t in a rather unstru
-tured way, in the sense that an intera
tion between two obje
ts is enabled simplyby virtue of their both being present in the soup. This still does not fully addressissues of stru
tural intera
tions between entities or system parts. �A severe short
oming of this view is the total la
k of spatial organization. The needto represent more stru
tured organizations (than sequen
e and multiset) of entities and mes-sages is stressed and motivates several extensions of rewriting (see for one example amongstothers [BH00℄). However, a general drawba
k with these approa
hes is that they work with3At the date of may 2001, it exists two versions of an MGS interpreter. One written in OCAML and onewritten in C++. There are some slight di�eren
es between the two versions. For instan
e, the OCAML version ismore 
omplete with respe
t to the fun
tionnal part of the language. These interpreters are freely available,by sending a demand to [giavitto|mi
hel℄�lami.univ-evry.fr.4with some adaptations in the terminology, bra
kets are our 
omments14



a �xed topology of entities, and it is not obvious at all how to extend this to systems wherethe number of entities and their relationships are 
onstantly 
hanging.This is pre
isely one of the main motivation of the MGS resear
h proje
t. One of our goal isto validate the 
ontribution of the topologi
al approa
h to the (spe
i�
ation and simulationof the) dynami
al organization of biosystems. By superseding the rewriting of terms bythe transformation of topologi
al 
olle
tions, we hope to go beyond the limitations of thepre
eding formalisms. To paraphrase the previous quotation:A 
olle
tion is used to represent the state of a DS. The elements in the 
olle
tionrepresent either entities (a subsystem or an atomi
 part of the DS) or messages(signal, 
ommand, information, a
tion, et
.) addressed to an entity.A sub
olle
tion represents a subset of intera
ting entities and messages in thesystem. The evolution of the system is a
hieved through transformations, wherethe left hand side of a rule typi
ally mat
hes an entity and a message addressed toit, and where the right hand side spe
i�es the entity's updated state, and possiblyother messages addressed to other entities.If one uses a multiset organization for the 
olle
tion, the entities intera
t in arather unstru
tured way. More organized topologi
al 
olle
tions are used for moresophisti
ated spatial organizations and intera
tions.2.4 Organization of the Rest of this ReportThe MGS language is presented informally in se
tion 3 through some examples. Simple ex-amples of MGS programs are given in the next se
tion. All examples are pro
essed using the
urrent version of the MGS interpreter.A possible formalization is presented in se
tion 5 for the theoreti
ally in
lined reader.Several formalization of MGS are possible. We present one whi
h is general enough and givessome insights for a generi
 implementation.Then, in se
tion 6, we sket
h how Γ and the CHAM, P systems, L systems and 
ellularautomata (CA) 
an be emulated in MGS. Our goal is mainly to sket
h the topology of theusual sets, bag, sequen
e and arrays data stru
tures.This report �nishes by the review of some dire
tions opened by this resear
h.
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3 An MGS Qui
k TourMGS is the a
ronym of � (en
ore) un Modèle Géneral de Simulation (de système dy-namique) � (yet another General Model for the Simulation of dynami
al systems). MGS em-beds the idea of topologi
al 
olle
tions and their transformations into the framework of asimple dynami
ally typed fun
tional language. Colle
tions are just new kinds of values andtransformations are fun
tions a
ting on 
olle
tions and de�ned by a spe
i�
 syntax usingrules. MGS is an appli
ative programming language: operators a
ting on values 
ombine val-ues to give new values, they do not a
t by side-e�e
t. In our 
ontext, dynami
ally typedmeans that there is no stati
 type 
he
king and that type errors are dete
ted at run-timeduring evaluation. Although dynami
ally typed, the set of values has a ri
h type stru
tureused in the de�nition of pattern-mat
hing, rule and transformations.This se
tion 
ontains a brief des
ription of the main features in MGS 
on
erning fun
tions,
olle
tions, transformations and their appli
ations. Elements of the MGS syntax are giventhrough examples. Some examples of a
tual 
ode are given in this and the following se
tionto give a �avor of the language.3.1 Fun
tions, Senten
es and ProgramsMGS is a small higher-order fun
tional language. This means that fun
tions are like any otherkinds of primitive values (su
h as integers, �oats, strings, et
.): they are �rst 
lass values and
an be passed as arguments to other fun
tions or returned as results.Lambdas and Named Lambdas. The denotation of fun
tional values is based on thelambda-
al
ulus; for example:
\x.\y.x + ydenotes a 
urry�ed fun
tion expe
ting one argument value X, that binds to x, and returninga fun
tion a
ting like \y.X + y. The syntax of a fun
tion appli
ation is the usual one witharguments surrounded by bra
kets: (\x.\y.x+ y)(3). Fun
tions may have several arguments.For instan
e,
\(x, y).x + yis a fun
tion returning the sum of its two expe
ted arguments. Another syntax is used togive a name to the fun
tion:
fun Plus(x, y) = x + ySu
h expression 
reates a fun
tional value and assigns this value to a global variable (Plus inthis example), thus the previous de�nition is equivalent to the expression Plus = \(x, y).x+y.We say that Plus is a named lambda. The name 
an be used instead of the anonymouslambda-expression in the fun
tion appli
ation, e.g. Plus(3, 4). Named lambdas enable thedire
t 
oding of re
ursive fun
tion:
fun fact(x) = if (x == 0) then 1 else x ∗ fact(x− 1) fi
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Primitive Fun
tions. The operator + that appears in the body of Plus is an exampleof a primitive fun
tional 
onstant (or � primitive fun
tion � in short). There is a ri
h setof su
h fun
tions to manage the primitive values. Primitive fun
tions 
an be used exa
tlylike any other named lambdas, they just are already de�ned when the interpreter is up. Thename of a primitive fun
tion always begins with a ba
kquote ' . Somme primitive fun
tionshave an additional spe
ial syntax for their appli
ation, like + whi
h is the in�x form forthe appli
ation of 'addition. That is, expression 3 + 4 is a short hand for the expression'addition(3, 4) .Senten
es and Programs. An MGS program is 
omposed of a sequen
e of senten
es. Asenten
e �nishes by a double semi-
olons � ; ; �. There are three kinds of senten
es:1. expressions,2. type de
larations,3. 
ommands.The evaluation of an expression triggers the 
omputation of somme value. The previousde�nition of fun
tion Plus is an exemple of an expression with a fun
tional value. Theexpression Plus(3, 4) is an example of an expression that 
omputes an integer.A type de
laration does not trigger any 
omputation. It just tell the interpreter that somenew name 
an be used at some pla
e in further expressions (see below the use of types aspredi
ates).Finally, 
ommands are outside the s
ope of the language and are used to intera
t with theinterpreter beyond the usual read-eval-print toplevel loop : one 
an in
lude some �le, divertthe output stream, list the named fun
tions or the de�ned types, save the 
urrent session,et
.3.2 Colle
tionsIn addition to basi
 values like integers, �oats, strings, lambda-expressions, et
., MGS handlesre
ords and several other kinds of 
olle
tions. The elements in a 
olle
tion 
an be any kind ofvalues: basi
 values, re
ords or arbitrary nesting of 
olle
tions. The values of the re
ord's �eldsare also of any kind, thus a
hieving 
omplex obje
ts in the sense of [BNTW95℄. Colle
tionsare (sub-)typed. The tree in Fig. 9 gives the type hierar
hy of 
olle
tions.3.2.1 Monoidal Colle
tionsSeveral kinds of topologi
al 
olle
tions are supported by MGS. We fo
us here on sets, multisetsand sequen
es. These kinds of 
olle
tion are 
alled monoidal be
ause they 
an be build as amonoid with operator join � , �: a sequen
e 
orresponds to a join that has no spe
ial property(ex
ept asso
iativity), multisets are obtained with 
ommutative joins and sets when theoperator is both 
ommutative and idempotent.
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recordmonoidal

seqbagset

AnotherSetMySet

array
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...pair

Figure 9: The subtyping hierar
hy of 
olle
tion kinds. MySet and AnotherSet are user-de�ned
olle
tion types, 
f. se
tion 3.2.3. Types 
olle
tion and monoidal do not 
orrespond to 
on
retedata stru
tures, but to predi
ates, 
f. below. Con
eptually, a re
ord is a set of pairs (�eld-name,�eld-value) but it is managed through dedi
ated operators, 
f. se
tion 3.3.There is a large amount of generi
 operations available for all 
olle
tion kinds, based onthe fun
tion algebra developed for instan
e in [BNTW95℄. The following table gives the main
onstru
tors for monoidal 
olle
tions.empty addition singleton 
ombinationSet set : () insert single_set(x) unionBag bag : () in
rement single_bag(x) munionSeq seq : () :: single_seq(x) �overloaded add mergesyntax , ,3.2.2 The topologies of Monoidal Colle
tionsThe join operator with its properties dire
tly indu
es the topology of the 
olle
tion and theneighborhood relationship. So, it is not a 
oin
iden
e that the neighborhood relationship inse
tion 2.2 and the join operation here are denoted by the same 
omma.� Topology of Sets. In a set, an element x is neighbor of any other element y.� Topology of Multisets. The topology of a multiset is the same as the topology of a set:two arbitrary elements are always neighbors. The di�eren
e is, the same element mayappear more than one time in the multiset.� Topology of Sequen
es. The topology of a sequen
e is the expe
ted one: if the sequen
ehas at least two elements, then all elements ex
ept the �rst and the last have twoneighbors (
alled the left and the right neighbor). The �rst and the last element haveonly one neighbor (respe
tively a right and a left neighbor). If the sequen
e is redu
edto a singleton, then this singleton as no neighbor.These neighboring relations are indu
ed by the join operations: if x, y then x is a neighboorof y. For instan
e, using asso
itivity and the 
ommutativity of the join of sets, the set� 1,
set

2,
set

3 � 
an be written � 1,
set

(2,
set

3) � whi
h shows that 2 and 3 are neighbors, but alsoit 
an be written � (1,
set

2),
set

3 � or � 2,
set

(1,
set

3) � whi
h show that 1 and 2 are neighboor aswell as 1 and 3. 19



3.2.3 User-De�ned Monoidal SubtypesOften there is a need to distinguish several 
olle
tions of the same kind (e.g. several multisetsnested in another multiset). Various ways 
an be used to a
hieve the distin
tion. For instan
e,in the P system formalism, ea
h multiset is labeled by a unique integer to referen
e themunambiguously. We 
hose to distinguish between 
olle
tions of the same kind by types. Thetype of a 
olle
tion must be thought of as a tag that does not 
hange the stru
ture of the
olle
tion. Types are organized by a subtyping relationship. The subtyping relation organizestypes into a poset. The kind of a 
olle
tion 
onstitutes the maximal element of this hierar
hy.Colle
tion type de
larations look like:
collection MySet = set;

collection AnotherSet = set;

collection AnotherMySet = MySet ;

MySet AnotherSet

AnotherMySet

set

These three de
larations spe
i�es a hierar
hy of three types. Type AnotherMySet is asubtype of MySet whi
h is a subtype of set. The type set is prede�ned and 
orresponds toa 
olle
tion kind (other prede�ned types are seq for sequen
es and bag for multisets). Thetype AnotherSet is also a subtype of set but is not 
omparable with MySet.A type introdu
ed by a type de
laration 
an later be used in pattern-mat
hing (
f. se
-tion 3.4) or as a predi
ate to test if a value is of a given type. A monoidal 
olle
tion type 
analso used in the building of a 
olle
tion by the enumeration of its elements:
1, 1 + 1, 2 + 1, 2 ∗ 2, MySet : ()is an expression evaluating to the set of four integers: 1, 2, 3 and 4. The 
olle
tion kind isa set, and its type is MySet. A
tually, expression � Myset : () � denotes the empty MySetand � , � is the overloaded join operator: x,X 
reates a new 
olle
tion with the element xmerged with the elements of 
olle
tion X; and expression X, Y 
reates a new 
olle
tion withelements of both 
olle
tions X and Y .The type of a 
olle
tion is taken into a

ount for several 
olle
tion operations. For in-stan
e, the join of two 
olle
tions of type P and Q gives a 
olle
tion with type R 
orrespond-ing to the 
ommon an
estor of P and Q. With the previous example, set is the 
ommonan
estor of MySet and AnotherSet). Another example, MySet is the 
ommon an
estor ofAnotherMySet and itself.3.2.4 Stru
tural Re
ursion on Monoidal Colle
tionsThe two overloaded operators oneof and rest are su
h that for any non empty monoidal
olle
tion, we have:
C = oneof(C) , rest(C)
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Together with the empty primitive predi
ate, they makes possible to de�ne a form of stru
turalre
ursion for monoidal 
olle
tions:
fun Iter(e, g) = \C.if empty(C)

then e(C)

else g(oneof(C), Iter (e, g)(rest(C)))

fiThe intent of the expression Iter(e, g) is to de�ne a fun
tion h su
h that:
h(X : ()) = e(X : ())

h((a,C)) = g(a, h(C))where X is the kind of the 
olle
tion, e a unary fun
tion that gives the value of h on the empty
olle
tion and g a 
ombining binary fun
tion. Please note that h is a unary fun
tion, so inexpression h((a,C)) the fun
tion h is applied to the 
olle
tion built by the join5 of a with C.This kind of fun
tion de�nitions (whi
h de�ne homomorphisms) is so 
ommon that Iteris a primitive fun
tion 
alled fold in MGS:
h = fold[g, e]Note that square bra
kets are used instead of bra
es be
ause the arguments g and e areoptional arguments with some default values6 (the default values are su
h that fold de�nesthe identity fun
tion on 
olle
tion).The fun
tion fold is 
alled an iterator. An iterator 
an be used to easely de�ne veryuseful other fun
tions. We give three examples. The sum of all elements in a 
olle
tion 
anbe de�ned by:
fold[\(a, c).a + c, \x.0]As a se
ond example, the famous map fun
tion is de�ned in MGS as:
fun map(f) = fold[\(a, c).(f(a), c), \x.x]Note that with this de�nition, we have a generi
 map that 
an a
t on any monoidal 
olle
tion.On sets for instan
e, the meaning7 of map is map(f)({a1, .., an}) = {f(a1), .., f(an)}. Finally,the generalization of the powerset fun
tion to the other 
olle
tion kinds 
an be de�ned as:
Power = fold[\(a,C).(C, map(\c.(a, c))(C)), \x.add(x, x)]5When there is an ambiguity between the appli
ation of a fun
tion to several arguments and the join ofseveral arguments, the former interpretation is 
hosen. Bra
es 
an be used to for
e the other interpretation,as in this 
ase here.6We do not detail further these features as they are not relevant for our purpose here.7Be 
areful that, for the sake of the explanation, we use the notation {a, b, c} to denote the set of the threeelements a, b and c. Previously we have used the notation {| a, b, c |} for a multiset. And below, we use thenotation <a, b, c> to express the sequen
e of the three elements a, b and c. However, these 
onstru
tions arenot part of the MGS syntax. The building of a 
olle
tion through the enumeration of its elements uses the joinoperator in MGS. 21



where add(x,C) adds the element x to the 
olle
tion C. On sets, the Power(S) build thepower set of S. On sequen
es, Power(L) built a sequen
e of all the subsequen
es of the list
L; for instan
e,

Power(<1, 2, 3>) = <<>, <3>, <2>, <2, 3>, <1>, <1, 3>, <1, 2>, <1, 2, 3>> .3.3 Re
ordsAn MGS re
ord is a spe
ial kind of 
olle
tion. An MGS re
ord is a map that asso
iates a valueto a name 
alled �eld. The value 
an be of any type, in
luding re
ords or other 
olle
tions.A

essing the value of a �eld in a re
ord is a
hieved with the dot notation: expression
{a = 1, b = "red"}.b evaluates to the string "red".Re
ords 
an be merged with the overloaded + operator. Expression r1 + r2 
omputesa new re
ord r having the �elds of both r1 and r2. Then r.a has the value of r2.a if the�eld a belongs to r2, else the value of r1.a (asymmetri
 merge with priority to the se
ondargument [Rém92℄).For re
ords, type de
larations look like

state R = {a};

state S = {b, c̃}+ R;

state T = S + {a = 1, d : string};(state is the keyword used to introdu
e the de�nition of a re
ord type in MGS). The �rstde
laration spe
i�es a re
ord type R whi
h 
onsists of the re
ords with at least a �eld named a.Types 
an be used as predi
ates:
R({a = 2, x = 3})evaluates to true be
ause the re
ord {a = 2, x = 3}) has a �eld a. The se
ond de
larationde�nes S whi
h has all the �elds of R plus a �eld b and no �eld c. The + operator betweenre
ord types emulates a kind of inheritan
e. The de�nition T spe
ializes type S by 
onstrain-ing the �eld a to the value 1 and saying that an additional �eld d must be present and be astring.3.4 Pattern, Rule and TransformationsA transformation T is a set of basi
 transformations or rules :
trans T = { ... rule; ... }When there is only one rule in the transformation, the en
losing bra
kets 
an be dropped.A transformation is a �rst-
lass value and some operators exist to 
ombine transformations.For instan
e, the transformation (T1 + T2) is the transformation obtained by merging the setof rules of T1 and the set of rules of T2.
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A rule is a basi
 transformation taking the following form:
pattern => expressionwhere pattern in the left hand side (lhs) of the rule mat
hes a sub
olle
tion A of the 
olle
tion

C on whi
h the transformation is applied. The sub
olle
tion A is substituted in C by the
olle
tion B 
omputed by the expression in the right hand side (rhs) of the rule. There arealso several kinds of rules, as detailed below.3.4.1 PatternsWe present the pattern expressions that have a generi
 meaning, that is, they 
an be inter-preted against any 
olle
tion kind. The grammar of the pattern expressions is:
Pat ::= x | {...} | p, p′ | p + | p ∗ | p : P | p/exp | p as x | (p)where p, p′ are patterns, x ranges over the pattern variables, P is a predi
ate and exp is anexpression evaluationg to a boolean value. The explanations below give an informal semanti
sfor these patterns.variable: a pattern variable x mat
hes exa
tly one element. The variable x 
an then o

urelsewhere in the rest of the rule both as a pattern or in an expression. A
tually, thepattern x is the abbreviation of � . as x � where the pattern � . � mat
hes exa
tly oneelement.state pattern: {...} are used to mat
h one element whi
h is a re
ord. The 
ontent of thebra
es 
an be used to mat
h re
ords with or without a spe
i�
 �eld (eventually 
on-strained to a given �eld type or �eld value). For instan
e, {a, b : string, c = 3, d̃} isa pattern that mat
hes a re
ord with �elds a, b of type string and c with value 3, andno �eld d.neighbor: p, p′ is a pattern that mat
hes two 
onne
ted 
olle
tions p and p′. For example,
x, y mat
hes two 
onne
ted elements (i.e., x must be a neighbor of y). The 
onne
tionrelationship depends of the 
olle
tion kind.repetition: pattern p+ (resp. p∗) mat
hes a non empty sub
olle
tion of elements mat
hedby p (resp. a possibly empty sub
olle
tion).binding: a binding p as x gives the name x to the 
olle
tion mat
hed by p. This name 
anbe used elsewhered in the rest of the rule. The evaluation of a pattern variable x inan expression returns the sub
olle
tion previously mat
hed. When reused as a patternvariable, the pattern x is interpreted as (y/y == x) where y is a fresh variable. Forexample, x, x is equivalent to x, (y/y == x) .guard: p/exp mat
hes the 
olle
tions mat
hed by the pattern p verifying exp. Pattern p : Pis a synta
ti
 suggar for ((p as x)/P (x)) where x is a fresh variable. For instan
e,
x : MySet �lters an element of type MySet. Another example: y / y > 3 mat
hes aninteger bigger than 3. 23



Here is a 
ontrived example. The pattern
(x : int/x < 3) + as S / card(S) < 5 & Fold[+](S) > 10sele
ts a sub
olle
tion S of integers less than 3, su
h that the 
ardinality of S is less than 5and the sum of the elements in S is greater than 10. If this pattern is used against a sequen
e(resp. set) (resp. multiset), S denotes a subsequen
e (resp. a subset) (resp. a sub-multiset).Some pattern 
onstru
ts are spe
i�
 to a 
olle
tion kind. For example, the 
onstru
t� ,̂ x � is used to sele
t an element whi
h has no left neighbor in a sequen
e. Su
h pattern hasno meaning when the transformation is applied for instan
e to a set, and an error is raised.Another example of a spe
i�
 
onstru
t are the operators left and right. They 
an be usedin the guard of a pattern (or in the rhs of a rule) to refer to the element to the right or to theleft of a mat
hed subsequen
e. These 
onstru
tions depend on the topology of the 
olle
tionand we plan to develop a generi
 and systemati
 spe
i�
ation of these operators using thenotion of boundary.3.4.2 RulesA transformation is a set of rules. When a transformation is applied to a 
olle
tion, thestrategy is to apply as many rules as possible in parallel. A rule 
an be applied if its patternmat
hes a sub
olle
tion. Several features are used to have a �ner 
ontrol over the 
hoi
e ofthe rules applied within a transformation.Ex
lusive and in
lusive rules. Ex
lusive rules 
onsume their arguments: a sub
olle
tionmat
hed by an ex
lusive rule 
annot interse
t a sub
olle
tion mat
hed by any other rule.In
lusive rules don't have this kind of 
onstraint. They are mainly used to transformindependent parts of a 
omplex obje
t8. This is best explained by an example:
{x as v} +=> {x = v + 1}

{y as v} +=> {y = 2 ∗ v}are two in
lusive rules (be
ause the arrow is +=>) mat
hing respe
tively a re
ord with a�eld x and a re
ord with a �eld y. So they 
an both apply to the re
ord {x = 2, y = 3}. Anin
lusive rule of form r +=> r′ where r is a re
ord pattern and r′ an expression evaluating toa re
ord, repla
es the mat
hed re
ord R by R+r′. So, the result of applying the two previousrules to {x = 2, y = 3} is {x = 3, y = 6}. This result is 
omputed as
(
{x = 2, y = 3}+ {x = 2 + 1}

)
+ {y = 2 ∗ 3}or (

{x = 2, y = 3}+ {y = 2 ∗ 3}
)

+ {x = 2 + 1}and is independent of the order of appli
ation of the two rules. Indeed, the rules work onindependent parts of the re
ord, both for a

essing or updating the value of a �eld.8Currently, only a rhs mat
hing a re
ord is allowed in an in
lusive rule, but the idea must be extended tonested 
olle
tions. The 
on
ept of in
lusive rule may appear very spe
i�
. However, it is a very e�e
tive wayto 
ut down the 
ombinatorial explosion of the behavior spe
i�
ations.24



Priority. Ex
lusive rules are applied before any in
lusive rules. A priority 
an be asso
iatedto ea
h rule, to spe
ify a pre
eden
e order within ea
h 
lass (the priority of in
lusive rulesmay be used to spe
ify the relative order of their appli
ations).Lo
al variables and 
onditional rules. MGS is not a purely fun
tional language. Imper-ative lo
al variables 
an be atta
hed to a transformation and updated by side e�e
ts in therhs of the rules. These variables 
an be used in a rule guard allowing the 
onditional use ofa rule. For instan
e, the transformation
trans T [a = 0] = {...; R = x ={ on a < 5 }=> (a := a + 1; 2 ∗ x); ...}spe
i�es a rule R whi
h is applied at most 5 times (within the evaluations triggered by oneappli
ation of T ). The body ={ · · · }= of the arrow de�nes an � on 
lause �. The expressionlinked to the on is used to de
ide if the rule is eligible for a transformation or not. Thede
ision o

urs befor any attempt to mat
h a sub
olle
tion. The semi-
olon in the rhs ofthe rule denotes the sequen
ing of two evaluations. As a 
onsequen
e, the lo
al imperativevariable a, initialized to 0 when T is applied, 
ounts the number of appli
ations of rule

R and the rule 
an apply only if a is less than 5. The initial value of a variable lo
al toa transformation 
an be overridden when the transformation is applied; for instan
e theevaluation of T [a = 3](...) enables at most 2 uses of rule R.3.5 Managing the Appli
ations of a TransformationA transformation T is a fun
tion like any other fun
tion and a �rst-
lass value. It makespossible to sequen
e and 
ompose transformations very easily.The expression T (C) denotes the appli
ation of one transformation step to the 
olle
tion
C. As said above, a transformation step 
onsists in the parallel appli
ation of the rules(modulo the rule appli
ation's features). A transformation step 
an be easily iterated:

T ['iter = n] (C) denotes the appli
ation of n transformation steps to C

T ['fixpoint] (C) appli
ation of the transformation T until a �xpoint is rea
hed
T ['fixrule] (C) idem but the �xpoint is dete
ted when no rule appliesIn addition to the standard transformation step strategy, two other appli
ation modesexist. In the sto
hasti
 mode, the 
hoi
e of the ex
lusive rule to apply is made randomly.The priorities of the ex
lusive rules are then 
onsidered as the relative probability of theire�e
tive appli
ation (when they 
an apply). In asyn
hronous mode, only one ex
lusive ruleis applied in one transformation step.
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4 Examples of MGS ProgramsThe following examples are freely inspired by examples given for Γ, P systems, L systemsand the 81/2 language [Mi
96℄.4.1 Maximal ElementThis example is a fundamental one, be
ause it emphasizes the ability to express in MGSmeaningful transformations able to a
t on several 
olle
tion kinds. The transformation
trans Max = {

x, y/ (x > y) => x ;

x, y/ (x < y) => y ;

}
an be used both on a set, a multiset or a sequen
e. On a set, it 
omputes the maximalelement in the set; on a sequen
e it 
omputes the maximal element(s) in the multiset; andon a sequen
e, it 
omputes a sequen
e 
omposed only of the maximal element of the initialargument. For instan
e,
Max ['fixrule]((1, 2, 2, 1, 0, 2, set : ())) = 2, set : ()

Max ['fixrule]((1, 2, 2, 1, 0, 2, bag : ())) = 2, 2, 2, bag : ()

Max ['fixrule]((1, 2, 2, 1, 0, 2, seq : ())) = 2, 2, 2, seq : ()Note that the se
ond rule of the transformation is ne
essary only to handle sequen
es in thesame manner, be
ause for sets and multisets, if x, y the we have also y, x, see se
tion 6.1.4.2 Map and SumThe sum of all elements in a 
olle
tion of numbers 
an be 
omputed by transformation
trans sum = a, b => a + b ; ;It is easy to a
hieve a fun
tion map with the transformation:
trans MAPF = a => f (a) ; ;This example 
an be elaborated to be parameterized by the fun
tion f :
trans MAP [fun = \a.a] = a => fun(a) ; ;

fun map(f,C) = MAP [fun = f ](C) ; ;Note that the fun
tion map is a fun
tion wrapper that applies one step of transformation
MAP to its argument C. This transformation is parameterized through an optional argumentfun whi
h takes the fun
tion to be applied. The default value for fun
tion fun is the identity,that is: MAP(C) ≡ C. The transformation 
onsists in substituting a by fun(a). Sin
e asmany rule instantiations as possible are done in parallel within one step, the only rule of thetransformation is applied to ea
h element in the 
olle
tion.27



4.3 Sorting a Sequen
eA kind of bubble-sort is immediate:
trans Sort = (x, y / y < x) => y, x;(This is not really bubble-sort be
ause swapping of elements 
an take at arbitrary pla
es;hen
e an out-of-order element does not ne
essarily bubble to the top in the 
hara
teristi
way.)4.4 Convex HullThe 
onvex hull of a set P of points in the plane is de�ned to be the smallest 
onvex polygon
ontaining them all. It is easy to show that the verti
es of the 
onvex hull of P are elementsof P . The program to 
ompute the 
onvex hull 
onsiders a point X and a triple of points

U, V and W and eliminates X if it falls inside the triangle U, V,W .We �rst de�ne a re
ord Point whi
h has a �eld x and a �eld y. We de�ne also twovariables named true and false for 
onvenien
e (however ea
h value 
an be interpreted as aboolean when needed as in the C programming language).
state Point = {x, y}; ;

false := 0; ; true := f̃alse; ;A point X falls inside the points U, V and W i� it exists α, β and γ between 0 and 1 su
hthat: αU + βV + γV = X and α + β + γ = 1. This gives a linear system of three equationswith three unknowns α, β and γ wi
h 
an be solved using the determinant method. Thisexplains the fun
tion inside de�ned below. The fun
tion det 
omputes a 3× 3 determinant;the fun
tion 
he
k tests if a value is between 0 and 1; and inside2 is an auxilliary fun
tionthat does the real work.
fun check(d) = (d >= 1)||(d <= 0); ;

fun det(a, b, c, d, e, f, g, h, i) =

a ∗ (e ∗ i− h ∗ f)− d ∗ (b ∗ i− h ∗ c) + g ∗ (b ∗ f − e ∗ c); ;

fun inside(X,U, V,W ) =

inside2 (X,U, V,W, det (U.x, V.x,W.x,U.y, V.y,W.y, 1, 1, 1)); ;

fun inside2 (X,U, V,W, d) =

if d == 0 then false

else if check(det(X.x, V.x,W.x,X.y, V.y,W.y, 1, 1, 1)/d) then false

else if check(det(U.x,X.x,W.x,U.y,X.y,W.y, 1, 1, 1)/d) then false

else if check(det(U.x, V.x,X.x, U.y, V.y,X.y, 1, 1, 1)/d) then false

else true

fi fi fi fi ; ;
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The fun
tion inside is used in the guard of the transformation:
trans Convex = X,U, V,W/ inside(X,U, V,W ) => U,V,W ; ;To test our program, we 
ompute the 
onvex hull of various points lying inside the squaredelimited by (0, 0) and (1, 1), in
luding the four 
orners:
Convex ['fixrule]((

{x = 0, y = 0},
{x = 0.2, y = 0.1},
{x = 0.5, y = 0.7},
{x = 1, y = 0},
{x = 0.1, y = 0.2},
{x = 1, y = 1},
{x = 0.2, y = 0.4},
{x = 0.4, y = 0.6},
{x = 0, y = 1},
set : ()

)); ;
omputes the expe
ted result:
{x = 0, y = 0}, {x = 0, y = 1}, {x = 1, y = 0}, {x = 1, y = 1}, () : set4.5 Eratosthene's Sieve on a SetThe idea is to generate a set with integers from 2 to N (with transformation Generate andSu

eed) and to repla
e an x and an y su
h that x divides y by x (transformation Eliminate).The results is the set of prime integers.
trans Generate = {x, true} => x, {x + 1, true};

trans Succedd = {x, true} => x;

trans Eliminate = (x, y / y modx = 0) => x;With this program, the expression
Eliminate ['fixrule](Succeed(Generate [N ](({2, true}, set : ()))))
omputes the primes up to N (and we 
an turn this expression into a fun
tion by abstra
tingon N).4.6 Eratosthene's Sieve on a Sequen
eThe idea is to re�ne the previous algorithm using a sequen
e. Ea
h element i in the sequen
e
orresponds to the previously 
omputed ith prime Pi and is represented by a re
ord {prime =

Pi}. This element 
an re
eive a 
andidate number n, whi
h is represented by a re
ord
29



{prime = Pi, candidate = n}. If the 
andidate satis�es the test, then the element transformsitself to a re
ord r = {prime = Pi, ok = n}. If the right neighbor of r is of form {prime =

Pi+1}, then the 
andidate n skips from r to the right neighbor. When there is no rightneighbor to r, then n is prime and a new element is added at the end of the sequen
e. The�rst element of the sequen
e is distinguished and generates the 
andidates.
trans Eratos = {

Genere1 = n : integer / r̃ight n => n, {prime = n};

Genere2 = n : integer, {prime as x, c̃andidate , õk}

=> n + 1, {prime = x, candidate = n};

Test1 = {prime as x, candidate as y, õk} / y modx = 0 => {prime = x};

Test2 = {prime as x, candidate as y, õk} / y modx <> 0

=> {prime = x, ok = y};

Next = {prime as x1, ok as y}, {prime as x2, õk , c̃andidate}

=> {prime = x1}, {prime = x2, candidate = y};

NextCreate = {prime as x, ok as y} as s / r̃ight s

=> {prime = x}, {prime = y};

}

prime = 7
candidate = 14

prime = 7

prime = 7 prime = 11 prime = 7 prime = 11
ok = 23 candidate = 23

prime = 7 prime = 7
ok = 23candidate = 23

prime = 7 prime = 11 prime = 13 prime = 17
ok = 19

prime = 19
ok = 23 candidate = 23

Test1

Test2

Next

Figure 10: The Eratos program. Some rule instantiations and a fragment of the sequen
e builtby the transformation Eratos.We have given an expli
it name to ea
h rule. See an illustration on Fig. 10. The ex-pression Eratos[N ]((2, seq : ())) exe
utes N steps of the Eratosthene's sieve. For instan
e
Eratos[100]((2, seq : ())) 
omputes the sequen
e: 42, {candidate = 42, prime = 2}, {ok =

41, prime = 3}, {prime = 5}, {prime = 7}, {prime = 11}, {prime = 13}, {ok = 37, prime =

17}, {prime = 19}, {prime = 23}, {prime = 29}, {prime = 31}, seq : ().
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4.7 Maximum Segment SumConsider the problem of �nding the segment of maximal sum in a sequen
e of numbers. Forinstan
e, in sequen
e <1, 2, -3, 2, 2, -1> the maximum segment sum is the segment <2, 2>.This optimization problem 
an be solved by dynami
al programming. The 
orrespondingalgorithm is easely stated in MGS.We �rst transform a sequen
e of numbers into a sequen
e of re
ords. A re
ord at position
p has a �eld val whi
h re
ords the number at position p in the initial sequen
e, a �eld sumwhi
h holds the sum of the 
urrent 
omputed maximal segment endings at position p anda �eld named indices whi
h 
ontains the positions of the elements of the 
urrent segmentending at p. Initially, the 
urrent segment that ends at position p also begins at position p.Thus:

trans init [p = 0] = (x/ record(x))

=> (p := p + 1; {val = x, sum = x, indices = (p, set : ())})For instan
e, init(<21,−5, 7>) 
omputes <{val = 21, sum = 21, indices = {1}}, {val = −5, sum =

−5, indices = {2}}, {val = 7, sum = 7, indices = {3}}> .Then, we 
an 
ombine a segment ending at position p and a segment at position p + 1 togives a segment at position p + 1 if this in
rease the lo
al s
ore:
trans all_max_sum =

((x, y)/(y.sum < (x.sum + y.val)))

=> x, y + {val = y.val, sum = x.sum + y.val, indices = x.indices@y.indices}; ;This transformation must be iterated until �xpoint. Then, the maximal segment sum 
an beextra
ted:
trans max_sum = {

x, y/x.sum > y.sum => x;

x, y/x.sum < y.sum => y;

}; ;The whole pro
ess 
an be sumarized in a fun
tion:
fun mss(C) = max_sum['fixrule](all_max_sum['fixrule](init(C))); ;4.8 TokenizationThe tokenization problem 
an be stated as follows: it is required to pro
ess a sequen
e ofletters to obtain the multiset of words 
onstituting the sequen
e. A word is a sequen
e ofletters without white spa
e.The solution, a two transformations long MGS program, relies on a nested 
olle
tionsstru
ture. On the top level, we have a multiset and the elements of this multiset are sequen
eswhi
h �nally must be without white spa
e. 31



We �rst de�nes two new types:
collection Word = seq; ;

state Split = {before , after}; ;The type Word is just a distinguished sequen
e type used to representes the words9. There
ord Split will be used to re
ord the two parts of a sequen
e splitted when a white spa
eis dete
ted. The rule:
trans CutSeq = (x/ x ! = ” ”) + as X, (y/ y == ” ”), (z + as Z)

=> {before = X, after = Z}; ;applied on a sequen
e, gives a new sequen
e. If there is a white spa
e ” ” in the sequen
e, thethe pattern � (x/ x ! = ” ”) + as X � �lters, in a subsequen
e named X, all the non-whitespa
e letters until the �rst o

uren
e of a white spa
e binded to y. Then Z binds to the restof the sequen
e. The result 
omputed by {before = X, after = Z} is a sequen
e 
ontainingonly one element, a re
ord of type Split. If there is no white spa
e on the sequen
e, the ruledoes not apply and the transformation is the identityRe
all that a transformation a
ts by applying rules on subsequen
es and the results aregathered in a sequen
e. This is why the results of applying CutSeq is always a sequen
e,even if the entire sequen
e is mat
hed by the rule10.The se
ond transformation apply CutSeq on the elements of a multiset and extra
t theresult of a split from the englobing sequen
e:
trans Cut = {

x/Split(hd x) => (hd x).before , (hdx).after , bag : ();

x => CutSeq(x);

}The �rst rule of this transformation is applied if the �rst element of a sequen
e is a Split. Inthis 
ase, the two �elds of the Split are extra
ted and 
onstitute the elements that are addedinto the multiset in pla
e of the mat
hed sequen
e. The se
ond rule apply the transformationCutSeq to an element. It is important to give the two rules in this order. As a matter offa
t, the se
ond rule 
an always apply (be
ause there is no guard, the pattern x mat
hes anyelement in the multiset). But we want to apply this rule only if the element is not a split.For example, see Fig. 11, the expression (the transformation Cut applied until �xpointto a multiset of one element, this element being a sequen
e Word):
Cut ['fixpoint](((”a”, ”b”, ”c”, ” ”, ”d”, ”e”, ” ”, ”f”, ”g”, ”h”,Word : ()), bag : ())); ;9Instead of letters, we use here strings (written between double quotes) to represent the elements of thewords, be
ause the 
urrent interpreter does not o�er letters as a basi
 type.10We are devising me
hanisms to ease the � dissolving � of a nested 
olle
tion, in a manner analog of thedissolve operator used in P systems. Here we use a rule in the transformation Cut.
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evaluates to
(
”a”, ”b”, ”c”, () :Word

)
,

(
”d”, ”e”, () :Word

)
,

(
”f”, ”g”, ”h”, () :Word

)
, () :bagthat is, a bag of three elements, ea
h element being a word without white spa
e. See �gure 11.

ba c hgfed

ba c

ed hgfFigure 11: Tokenisation of a sequen
e of letters4.9 Token moving on a RingThe problem is just to propagate a token on a ring. The idea is to use a rule
(x/x == 1), (y/y == 0) => 0, 1;to say that the token � 1 � propagates in a medium of 0. However, the topology of a ring isnot dire
tly a

essible as a 
olle
tion kind (not yet). But it 
an be emulated by a sequen
eand by managing expli
itly what o

urs for the begin and the end of the sequen
e. Insteadof written one rule, we have to write three rules. The rule for the �rst element looks like:
z/(z == 0) & l̃eft z & . . . => 1;where the 
ondition l̃eft z spe
i�es that z is the �rst element in the sequen
e (it has noelement to its left) and the 
ondition z == 0 ensure that it is not o

upied by a token. Itremains to 
he
k that the last element of the sequen
e is o

upied by a one.For, we have to refer to the global 
olle
tion on whi
h the transformation is a
ting. Thisis possible, using simply an additional parameter of the transformation. When we apply thetransformation, we arrange to pass the 
olle
tion both as the argument and as the value of theadditional parameter of the transformation (using a wrapper). The 
orresponding programis:
trans Tore [self ] = {

(x/x == 1), (y/y == 0) => 0, 1;

y/(y == 1) & r̃ight y & (0 == hd(self )) => 0;

z/(z == 0) & l̃eft z & (1 == last(self )) => 1;

}; ;

fun tore(t) = Tore[self = t](t); ;The operators hd and last give the �rst and the last element in a sequen
e. The fun
tiontore is the wrapper of the transformation Tore. An n-times iteration of the transformation is33



then simply obtained by iterating the fun
tion tore n-times, whi
h is realized with the samesyntax as the iteration of a transformation : tore [n](. . . ). The 6th �rst iterations startingfrom a ring with 5 element and just one token, give:
0, 0, 1, 0, 0

0, 0, 0, 1, 0

0, 0, 0, 0, 1

1, 0, 0, 0, 0

0, 1, 0, 0, 0

0, 0, 1, 0, 0This program gives an example of the smooth interplay between transformations and fun
-tions, and the use of additional arguments in a transformation.Moving a token on a ring is not very interesting. Instead of moving one token, one 
andi�use two morphogenes that, in addition, rea
t together. This pro
ess is sket
hed in thenext se
tion. The previous idea is used to di�use on a ring emulated on a sequen
e. Theresults of the MGS program are output in a Mathemati
a readable form, for the purpose ofvisualization. The result is plotted in �gure 12. We do not give the 
orresponding MGS
ode be
ause it simply 
ombines the previous idea with the Turing di�usion-rea
tion pro
essdes
ribed below. For information, the MGS 
ode takes 75 lines, in
luding 35 lines dedi
atedto format the output for Mathemati
a while an hand-
oded C program takes 70 lines to only
ompute the di�usion-rea
tion pro
ess.

Figure 12: Example of a Turing di�usion-rea
tion pro
ess on a ring. Ea
h 
ell of the ringis rendered by a sli
e of the torus. The diameter of the sli
e is proportional to the b morphogene(
f. text of se
tion 4.10). The results 
omputed by the MGS program are written in a �le later readby Mathemati
a. This �le 
ontains both the 
omputed data and a Mathemati
a program used to
ompute the 
oordinate of the torus and to render the 3D obje
ts. This �gure plots a gif 
apture ofthe graphi
s rendered by Mathemati
a when reading the MGS produ
ed �le.
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4.10 Morphogenesis Triggered by a Turing Di�usion-Rea
tion Pro
essAlan Turing proposed a model of 
hemi
al rea
tion 
oupled with a di�usion pro
essus in 
ellsto explain patterns formation. The system of di�erential equations [BL74℄ is:
dar/dt = 1/16(16 − arbr) + (ar+1 − 2ar + ar−1)

dbr/dt = 1/16(16 − br − β) + (br+1 − 2br + br−1)where a and b are two 
hemi
al rea
tives that di�use on a dis
rete segment of 
ells indexed by
r. This model mixes a 
ontinuous phenomena (the 
hemi
al rea
tion in time) and a dis
retedi�usion pro
ess. In MGS we retrive these equations, three times, to handle the 
ell at the twoends of the segment (rule evol_left and evol_right) and the 
ells with two neighboors (rule
evol).In addition, we 
omplexify this pro
essus by splitting one 
ell in two if the level of themorphogen b is greater than a given level (rule Split). This pro
ess does not 
orrespond toany real biosystems, see however [HP96℄.The 
orrresponding program starts by a transformation used to generate the initial se-quen
e of 
ells.

trans init =

x => {

a = 3.5 + random(1.0) − 0.5,

b = 4.0,

beta = 12.0 + random(0.05 ∗ 2.0) − 0.05,

size = 16

};

rsp := 1.0/16.0; ;

diff1 := 0.25; ;

diff2 := 0.0625; ;

NbCell := 18; ;

segment0 := init[1](iota(NbCell, () : seq)); ;The init transformation is used to generate the initial sequen
e of 
ells segment0. Appliedone times to a sequen
e of n arbitrary elements, it generates a sequen
e of re
ords. The �eld
a and b of the re
ord 
orresponds to the morphogens. The �eld beta is an auxilliary variableof the di�usion-rea
tion pro
ess: it 
orresponds to a 
onstant with some noise. The �eld sizeis used for the 3D output, see �gure 13 and annex B. The expression iota(NbCell, () : seq)build a sequen
e made of the integers from 0 to NbCell.The real 
omputation takes pla
e in the Turing transformation. One rule is used to splita 
ell that rea
h the adequate level of morphogen b and three other rules are used for therea
tion-di�usion pro
ess. The fun
tions da and db 
omputes the in
reases in morphogen a
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and b respe
tively.
fun da(a, b, la, ra) = rsp ∗ (16.0 − a ∗ b) + diff1 ∗ (la + ra− 2.0 ∗ a); ;

fun db(a, b, beta, lb, rb) = rsp ∗ (a ∗ b− b− beta) + diff2 ∗ (lb + rb− 2.0 ∗ b); ;

trans Turing = {

Split =

(x/x.b > 8) =>

{a = x.a/2, b = x.b/2, beta = x.beta, size = x.size/2},

{a = x.a/2, b = x.b/2, beta = x.beta, size = x.size− x.size/2};

evol =

(x/(left x)&(right x))+=>

{a = x.a + da(x.a, x.b, (left x).a, (right x).a),

b = Max(0.0, x.b + db(x.a, x.b, x.beta, (left x).b, (right x).b))};

evol_right =

(x/̃ left x)+=>

{a = x.a + da(x.a, x.b, 0, (right x).a),

b = Max(0.0, x.b + db(x.a, x.b, x.beta, 0, (right x).b))};

evol_left =

(x/̃ right x)+=>

{a = x.a + da(x.a, x.b, (left x).a, 0),

b = Max(0.0, x.b + db(x.a, x.b, x.beta, (left x).b, 0))};

}; ;The rest of the 
ode is used to trigger the 
omputation and to output the results. The outputis done in a dedi
ated language used to visualize 3D s
enes. The result is plotted in �gure 13.The fun
tions showBarre, pre_show and post_show are detailed in annex B. This 
odeis very short and easy to program, be
ause the language used to produ
e the s
ene is veryexpressive.
fun showBarre(barre, t, tmax) = . . . ; ;

fun pre_show() = . . . ; ;

fun post_show(n, c) = . . . ; ;

fun evol(barre, t, tmax) =
(

showBarre(barre, t, tmax);

if (t < tmax) then evol(Turing[iter = 1](barre), t + 1, tmax)

else barre fi

);

fun evolve(n) = (pre_show(); evol(segment0, 0, n); post_show(n,NbCell)); ;
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Figure 13: Example of a Turing di�usion-rea
tion pro
ess 
oupled with a morphogenesis.Ea
h 
ell is rendered by a blo
k whose height is proportional to the b morphogene (
f. text). Whena 
ell is splitted in two, the width of the two daughter 
ells is divided by two, su
h that 
ells with a
ommon an
estor are in the same parallel line (the axis dire
ted toward the reader, whi
h representsthe passing of time). This plot 
orresponds to 180 time step evolution of an initial sequen
e of 18
ells.
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5 Topologi
al Colle
tions and their TransformationsAt this point of our presentation, the interested reader may obje
t that the 
olle
tion kindsin MGS are not related and that their presen
e in the same language is more a matter ofjuxtaposition rather than an integration. In the 
urrent prototypes (april 2001), it is truethat the implementation of the 
olle
tion kinds and of the pattern-mat
hing algorithms aread-ho
. And there is no way to build new 
olle
tion kinds at user level (beside subtyping
f. se
tion 3.2.3).However, we show in this se
tion that a formal generi
 framework 
an be developped.This formal framework relies on mathemati
al notions developped in 
ombinatorial algebrai
topology. The algebrai
 and 
ombinatorial de�nition of the involved 
on
epts makes themparti
ularly suited for a 
omputer implementation and justify our 
laims in the unifying andgeneri
 nature of the MGS approa
h, far beyond monoidal 
olle
tion. The development of anew version of the MGS prototypes based on this formalization has starded, see 7.The reader not interested in the formal development may skip this se
tion.5.1 Organization of this se
tionThe de�nitions and results given below are standard in 
ombinatorial algebrai
 topology, andhave been gathered from the referen
es [Ale82, Mun84, HY88, Sha90, Hen94, Axe98, Ber00℄.Annex C reviews some of the algebrai
 stru
tures used below.The algebrai
 apparatus used here may appear very heavy with respe
t to our needs.However, the de�nitions introdu
ed here are only the �rst elementary notions introdu
ed forstarting homology and 
ohomology theory.We have tried to give an explanatory introdu
tion of these de�nitions, following a stepby step presentation, with some insights and intuitions talking to a 
omputer s
ientist. Thepresentation is then not very straightforward and we have avoided a mu
h more brutal but
on
ise presentation. This explains the length of this 
hapter and the mix between informal
onsiderations and the algebrai
 devi
es.The organisation of this 
hapter 
an be sket
hed as follow:1. The basi
 obje
ts used to 
onstru
t the spa
e underlying a topologi
al 
olle
tion, ab-stra
t 
omplexes, are introdu
ed in se
tion 5.2 and their neigborhood relationships arede�ned in se
tion 5.3.2. The previous stru
ture is simple and natural but has some drawba
ks when it 
omes tospeak about boundary, or part of a spa
e. The stru
ture of 
hain group, that over
omesthese limitation, is then presented in se
tion 5.4. This stru
ture is used to asso
iate avalue to ea
h basi
 obje
t to take into a

ount its neigborhood (se
tion 5.5).3. We need to relate the notion of abstra
t 
omplex and 
hain group together. It impliesthat only 
hain groups with a spe
i�
 form interest us. This is explained in se
tion 5.5.A fundamental example is presented in the next se
tion (se
tion 5.6). The stru
ture ofthese group are more 
losely investigated in se
tion 5.7.39



4. There is an algebrai
 notion of duality that 
an be used to extend the notion of 
haingroup. This extension generalizes the notion of 
hain and also gives a support tothe notion of 
oboundary : two elements 
an be neighboor not only be
ause they sharesomething, but also be
ause they are shared by something. The geometri
 interpretationis then sket
hed (se
tion 5.8).5. Se
tion 5.9 shows that the previous notions 
an be used not only to render the neigh-borhood relationships, but also to asso
iate a value with the � pla
es � of a spa
e.6. We then take all this de�nitions together and put some additional 
onstraints to de�nethe type of a topologi
al 
olle
tion (se
tion 5.10).7. Various kind of transformations of su
h obje
ts are spe
i�ed in the following se
tion(se
tion 5.11).8. The previous de�nitions are illustrated in an ad-ho
 maner on the spe
i�
 example ofgrids (se
tion 5.12).9. We summarize this presentation in the last se
tion.5.2 Cellular Spa
es and Combinatorial Stru
ture of ComplexesTopology is often presented as the geometry of rubber sheet: the properties of a �gure thatremain true under twisting, pulling, stret
hing, ..., any deformation of this sort providedthe rubber 
an withstand it without ripping or tearing. Notions like 
ontinuity, limit, openset, et
., are developped in point set topology and are pertaining analysis and 
al
ulus.On the other hand, 
ombinatorial topology has developed a strong algebrai
 �avor. The
ombinatorial method is used to 
onstru
t 
ompli
ated �gures from simple ones and to dedu
eproperties of the 
ompli
ated from the simple. Here we want to speak about a spa
e madeof pla
es and the neighborhood of a pla
e in this spa
e. The set of pla
es is dis
rete and weare not really interested by the � metri
 � aspe
t of this spa
e. It does not matter if a pla
eis � far � or � near � another pla
e. What does matter is the 
onne
tion between pla
es andthe de
omposition of pla
es into subpla
es. So, the 
ombinatorial approa
h suits parti
ularlywell our needs. This sort of spa
e, with its 
ombinatorial stru
ture, will be the 
arrier of atopologi
al 
olle
tion.It is 
onvenient to des
ribe this spa
e as build from basi
 blo
s. This basi
 blo
s are
alled k-
ells. Beware that we use the same word � 
ell � for the biologi
al obje
t and thetopologi
al notion. In this 
hapter, we only refer to the topologi
al notion. The fa
t that atopologi
al 3-
ell 
an be used to represent a biologi
al 
ell in a simulation may be 
onfusing.A k-
ell is an homeomorphi
 image of an open balls in Rk. In other word, a k-
ell c is theimage of the set D
k = {x ∈ R

k, ||x|| < 1} by a 
ontinuous bije
tion h, su
h that h−1 is also
ontinuous. However, the pre
ise nature of the 
ell c is not stressed in a purely 
ombinatorialapproa
h until no link is made with point set topology notion. Here, we need only to gradthe 
ells by their dimension and to fo
us on the 
onne
tion of 
ells.A 
olle
tion of 
ells that are �tted together in an appropriate way form larger stru
tures
alled 
omplexes. Examples of 
omplexes are given in Fig. 14 and 15. If an edge e is a side40
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omplex. The s
hema in the right hand side gives the Hasse diagram ofthe in
iden
e relation of the 
omplex in the left hand side. Fa
es are denoted by 
apital letters A,B and C. Edges are denoted by small letters and verti
es by numbers. For instan
e, the fa
e B isbounded by two edges i and j whi
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es 2 and 3. This example showsalso that an abstra
t 
omplex is generally not a latti
e : there is for instan
e no least upper bound foredges e and f: both fa
es A and C are in
omparable su

essors of e and f.
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of a fa
e f , we say that e and f are in
ident and we write e < f . The relation with the pointset notion of a 
ell as an open ball, is the following. If a 
ell c is part of the 
losure of a 
ell
c′, we say that c is in
ident to c′ and we write c < c′. However, the in
iden
e relation is anorder, and that's all we are interested in.Definition 1 (Bounded Poset (P,<)). A poset (P,<) is a set P with an antisymmetri
and transitive relation < (the partial order). A poset is bounded if there are a unique minimaland maximal element 0 and 1. Let x, y ∈ P su
h that x < y and there is no z su
h that
x < z and z < y. Then we write x ≺ y and we say that x is a prede
essor of y or that y is asu

essor of x.Definition 2 (Abstra
t Complex ). An abstra
t 
omplex K is a bounded poset with afun
tion dim : K → Z de�ned for the elements e ∈ K − {0,1} su
h that e < e′ implies
dim e < dim e′ and e ≺ e′ implies dim e′ = 1 + dim e. The set Kp = {e | e ∈ K,dim e = p} arethe p-
ells of K. A 0-
ell is also 
alled a vertex, a 1-
ell is an edge and a 2-
ell is a fa
e. Thedimension dim S of a subset S ⊂ K is the biggest of the dimensions of the elements of S ifit exists.The minimal and maximal element in the abstra
t 
omplex de�nition will not be usedat all here (they are useful to make some 
onstru
tions more smoth). A graph is simply anabstra
t 
omplex of dimension 1: the verti
es are the nodes of the graph and 1-simpli
es arethe edges, with the additional 
ondition that there is exa
tly two prede
essors for ea
h edge.Note that using an abstra
t 
omplex, one 
annot make a di�eren
e between a 
ylinder anda moebius strip be
ause they give the same poset, see �gure 16. These de�nitions are purely
ombinatorial and more spe
ialized versions toward a geometri
 representation are usuallyused; we 
an 
ite simpli
ial 
omplex, singular 
omplex, semi-simpli
ial set, polytope,
ellular 
omplex, CW-
omplex, et
. They make more 
onstraints in the �tting of 
ells intoa 
omplex.5.3 Star, Link and Conne
tionsGiven a poset and its partial order <, we de�ne the derived ≤ and � relationships. Wede�nes now some operations on subsets of 
omplexes. For a subset S ⊆ P , the smallest poset
S is its 
losure.Definition 3 (Sub
omplex, Star and Shape). Let (K, <), an abstra
t 
omplex and S ⊆ Ka subset of K. Then the set S = {y | y ∈ K, y ≤ x ∈ S} with the relation < is thesub
omplex generated by S. It is 
alled the 
losure of S. The star Stx of a 
ell x ∈ K is
Stx = {y | x ≤ y ∈ K}. We de�ne the star of a subset S ⊆ K to be StS =

⋃
x∈S Stx and the
losed star is StS = StS . An element x is above a set S ⊂ K i� x ∈ S or if the elements ofthe set {y | y ≺ x} are all above S. The shape Shape(S) of a subset S ⊂ K is the set of theelements above S. These notions are illustrated in �gure 17 and 18.There is two ways for a 
ell x to be 
onne
ted with a 
ell y: be
ause they share a 
ommonboundary or be
ause they are both boundaries of a � bigger � 
ell. Then, it appears that the� neighbors � of a 
ell x are the 
ells in Stx. 42
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omplex 
annot handle orientation. For example, the moebius strip onthe left gives the same poset as the 
ylinder on the right (they are both 
omposed of 3 fa
es, 3 edgesand 6 verti
es).

Figure 17: Examples of star and link. The subset S is 
omposed of 4 edges and 3 verti
es. Onthe top we have S pi
tured on the 
omplex K, then StS and St S. On the bottom line we have S,
StS and the link of s: LkS = StS \ St S whi
h 
onsists of two 
omponents of 4 edges and 5 verti
esea
h (the operator r � denotes the asymmetri
 set di�eren
e, i.e. A r B = {x | x ∈ A, x 6∈ B}).
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Shape(S)Figure 18: Conne
tion and shape of a set. Left �gure. We �gure symboli
ally a poset K by atriangle. The 
oloured triangle below element a is the sub
omplex a generated by a. It is also 
alledthe 
one below a. An element x is in the 
one below y i� x ≤ y. The set {a, b, c, d, e} is 
onne
tedbe
ause elements are 
onne
ted two by two. Fo example, a and b are 
onne
ted be
ause a ≤ b, idemfor c and b. The elements c and e are 
onne
ted be
ause d ≤ c and d ≤ e. Let A = a, C = c and
E = e be the 
losure of {a}, {c} and {e} respe
tively. Then the set A ∪C ∪E ∪ {b} is also 
onne
tedbe
ause a 
losure of a 
onne
ted set is 
onne
ted. Right �gure. The set S 
onsists of three internalverti
es of a line graph. We have �gured St(S) and Shape(S).
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Definition 4 (Conne
tions). Two 
ells x and y of an abstra
t 
omplex K are 
onne
ted,and we write x , y, if x ∩ y 6= ∅ or if Stx ∩ St y 6= ∅. Given a set S ⊆ K, we de�ne (,\S) asthe restri
tion of , on S: (,\S) = ,∩(S × S). Let (,\S)∗ be the transitive 
losure of thisrelation. A subset S of K is 
onne
ted if (,\S)∗ has only one equivalen
e 
lass.Considering an in�nite 
omplex may be useful, for instan
e to represent an unboundedgrid. However, ea
h element (vertex or edge) in this grid is 
onne
ted to only a �nite set ofother elements. Then, we say that the grid is lo
ally �nite.Definition 5 (Lo
ally �nite 
omplex ). A 
omplex K is 
losure-�nite if for all 
ell x ∈ K,
x is a �nite set. It is star-�nite if Stx is a �nite set for all x in K. A 
omplex whi
h is both
losure-�nite and star-�nite, is said to be lo
ally �nite.5.4 Chain ComplexFigure 16 shows that the poset stru
ture alone is not enough to represent the 
onne
tion of
ells. The problem 
an be splitted into two subproblems:1. how a 
ell de
omposes into sub
ells;2. how a 
ell lies in the 
omplex.Obviously these problems are related. We will ta
kle the �rst question in this se
tion. Weshall examine the se
ond in se
tion 5.8.A 
ell is not 
ompletely des
ribed by the simple set of its prede
essors. One must representalso some organisation of these prede
essors: for example an orientation, or a 
ount if somesub
ells are identi�ed (see the pi
ture at the right on �gure 22). This organisation of the setof the prede
essors is represented by the notion of 
hain : a 
hain is a � stru
tured set � of 
ells.This stru
ture is spe
i�ed through an abelian group stru
ture and a boundary operator. Theabelian group stru
ture (the annex C gives a qui
k review of this notion) is used to des
ribethe gluing of two 
ells using the group operation (written additively). The boundary operatorgives the 
hain that des
ribes the boundary of a 
ell, and by extension, the boundary of any
hain.Using an abelian group operation to represent the � gluing � c of two 
ells x and y meansthat we 
an write c = x+y or c = y+x: the order of the gluing does not matter. The neutralelement 0 
orresponds to the empty set. And if we add a 
ell x to a part c, one must be ableto � deta
h � the 
ell x from c latter. This justify the use of a group stru
ture for the set of
hains. Furthermore, one of the main obje
tive of the theory is to 
ompute the boundaryof an arbitrary part of a spa
e, from the boudary de�ned for an � isolated � 
ell. Thus, it isnatural to require the boundary operator ∂ to be an homomorphism: ∂(x+ y) = ∂(x)+∂(y).These 
onsiderations motivate the following de�nition.Definition 6 (Chain Complex ). A 
hain 
omplex is a sequen
e C = (Cp, ∂p)p∈Z of abeliangroups Cp and 
onne
ting homomorphism ∂p : Cp → Cp−1, 
alled boundary maps.The group Cp is 
alled the p-
hain group and an element c of Cp is 
alled a p-
hain. Cprepresents all the way to glue p-
ells together. Sometimes we use a subs
ript p to indi
ate that

44



a 
hain c is a p-
hain: cp. In the opposite, for 
onvenien
e in notation, we shall sometimesdelete the dimensional subs
ript p on the boundary operator ∂p, and rely on the 
ontext tomake 
lear whi
h of these operators is intended.An abelian group Cp is trivial when its only p-
hain is 0 (the element zero of the group).It this 
ase we write Cp = 0. A �nite dimensional 
hain 
omplex C is su
h that the Cp aretrivial ex
ept for at most a �nite number of p. Most often, Cp is the trivial group for p < 0and in this 
ase we say that C is a non-negative 
hain 
omplex. If Cp is a free abelian groupfor ea
h p, then C is 
alled a free 
hain 
omplex. The 
hain 
omplex is said homologi
al or
alled a graded di�erential group with operator ∂, i� for all p and for all c ∈ Cp+1,
(∂p ◦ ∂p+1)(c) = 0This 
ondition re�e
ts the intuitive property that � the border of something has no borderitself �. Figure 19 gives an example of a non-homologi
al 
hain 
omplex. Intuitively, the lossof homology 
omes from identifying parts of the boundary of a 
ell.5.5 Chain Group with Coe�
ient in an Arbitrary Abelian GroupIn the two examples of the �gure 19, the groups Cp are built from the p-
ells in Kp by sayingthat Cp is the abelian group generated by the element of Kp subje
t to the equations c+c = 0.In other word, every element in Cp is a formal sum of elements in Kp and any element c in

Cp is its own inverse. Example of 
hains are e, e + f, f + e + g, et
. So, the relation betweena 
hain and a 
ell is 
lear in this 
ase: the 
hain redu
ed to only one element x, 
orrespondsto a p-
ell x.
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1 4Figure 19: Examples of a non-homologi
al and an homologi
al 
hain 
omplex. The two�gures represent two possible 
onstru
tions of a sphere. The asso
iated 
omplex K is de�ned on theright. The verti
es are nammed by an itali
 number (1 , 2 , ...), edges are identi�ed by a letter in thebegining of the alphabet (e, f , ...) and the fa
es are 
alled s and s′. A p-
hain is simply a � sum�of p-
ells, like e + f for instan
e. In addition, we suppose that the 
hain groups Cp are idemgroups,that is c + c = 0 for any p-
hain. Furthermore, we de�ne ∂(x) =
∑

y≺x
y for all p-
ell x ∈ K and weextend the operator ∂ by linearity, that is ∂(x + y) = ∂x + ∂y. The 
omplex pi
tured to the left isa non-homologi
al 
omplex. Fa
e s is folded and its boundary 
onsists only of one edge e (imaginethe border of a disk pathologi
ally stit
hed on itself to obtain a sphere). The verti
es 1 and 2 arethe boundary of this edge. This 
omplex is non-homologi
al be
ause ∂∂(s) = ∂(e) = (1 + 2 ) 6= 0.This has to be 
ompared with the 
omplex pi
tured at the right hand-side whi
h is homologi
al. Forinstan
e ∂∂(s) = ∂(f + g + e + h) = (1 + 3 ) + (2 + 4 ) + (1 + 2 ) + (4 + 3 ) = 0 (re
all that x + x = 0in an idemgroup). And the result is the same for s′ or any other k-
ell.
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However, the des
ription of the stru
ture of a spa
e by a 
hain 
omplex is rather abstra
tand we have in general no expli
it notion of the 
ells in the des
ription of a 
hain 
omplex.How 
an we relate an abstra
t 
omplex K and a 
hain 
omplex C?The idea is that some elements in Cp, 
alled elementary 
hains, must represent a unique
p-
ell x together with a 
oe�
ient g whi
h represents some information about the � gluing �(orientation, 
ount, et
.) of x. Let G be the set of all possible g. Then an elementary 
hain
an be viewed as a pair (g, x). A typi
al element in Cp is a sum of su
h elementary 
hainsand Cp must have the stru
ture of a group. Consider the sum of two elementary 
hains onthe same 
ell x: c = (g, x) + (g′, x). The result must be an elementary 
hain on the same
p-
ell x, so c = (g′′, x). The 
oe�
ient g′′ must represent the 
ontribution of x 
oming froma 
ontribution g and a 
ontribution g′. We write g′′ = g + g′ and is this easy to see that if
Cp has an abelian group stru
ture, then G must have an abelian group stru
ture too. And
onversely. If we write an elementary 
hain (g, x) as the formal produ
t gx of an element ofthe 
oe�
ient group G by an elementary p-
ell, then a typi
al 
hain cp 
an be written

cp =
∑

x∈Kp

gxxwhere gx is the 
oe�
ient that des
ribe the 
ontribution of the p-
ell x. But one man think
cp has a fun
tion that des
ribes the 
ontribution of x, that is, cp : Kp → G with cp(x) = gx.Histori
ally, people have �rst 
onsidered 
hains with a �nite number of 
ontributing p-
ells,so in the previous sum we 
onsider that only a �nite number of gx are nonzero. Hen
e thede�nition.Definition 7 (Chain Group with Coe�
ient in an abelian group G).Let K an abstra
t 
omplex (�nite or not), and let G denotes an arbitrary abelian groupwritten additively. The neutral element of G is written 0. The set Cp(K, G) of p-
hain onthe 
omplex K with 
oe�
ient in G is the set of total fun
tions cp from the set Kp to Gthat are zero almost everywhere, that is, cp(x) = 0 for all but a �nite number of p-
ells of K.The operation used to turn the set of k-
hains into a group is the addition of fun
tions ifone thinks of them as fun
tion, or the 
omponentwise addition if one thinks of them as sums.Integral 
hains are just 
hains with integer 
oe�
ients Cp(K, Z). The integral 
hain group,of spe
ial importan
e, is abbreviated Cp(K). The justi�
ation of the sum notation, with theprodu
t of a p-
ell and a 
oe�
ient in G wille be delayed until se
tion 5.7.Carrier of a Chain. Let cp = α1x1 + · · · + αnxn be a 
hain of C(K, G). Then αi ∈ Gand we suppose also that αi 6= 0 for all i. Then the 
arrier of cp is the set of p-
ells with anonzero 
oe�
ient in the 
o
hain: |cp| = {x1, . . . , xn, . . . }.Compatible Boundary Homomorphisms. We have de�ned the boundary maps of a
hain 
omplex C = (Cp, ∂p) as a sequen
e of homomorphisms satisfying the signature:

C0
∂1←−− C1

∂2←−− C2
∂3←−− · · ·
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Saying that ∂p is an homomorphism means that we 
an de�ne ∂p on elementary 
hains andextend the boundary operator on any 
hains by linearity : ∂(c+ c′) = ∂c+∂c′ In other word,� the boundary of a sum of elements is the sum of the boundaries of the elements �.The boundary operators embeed more information than the poset stru
ture alone. Forexample, suppose we work with integral 
hain groups and we have to des
ribe the moebiusband in �gure 16. Then the prede
essor of C are a and c and we have ∂C = c − a. Theedge a is 
ounted negatively to a

ount for an oposite orientation. For the 
ylinder, we have
∂C = c + a: the boundary operators makes a di�eren
e between two obje
ts that are notdistinguished with the poset stru
ture alone.However, when we use the 
hain groups Cp(K, G) in relation with an abstra
t 
omplex
K, we need to relate the 
onne
tion stru
ture des
ribed by the abstra
t 
omplex K and the
onne
tion des
ribed by ∂.Definition 8 (Compatible Boundaries). Let (Cp(K, G), ∂p) be a 
hain 
omplex asso
iatedwith an abstra
t 
omplex (K, <). Then, the boundary maps ∂p are said 
ompatible with Ki� for all x ∈ Kp, and for all g ∈ G, g 6= 0, |∂gx| = {y | y ≺K x}.The elements with nonzero 
oe�
ient in ∂gx are exa
tly the prede
essors of x. This
ondition ensure the 
oheren
e between the poset stru
ture of the abstra
t 
omplex K andthe boundary operations. In the previous example, the 
ompatibility 
ondition is respe
tedbe
ause |∂C| = {a, c} both for the moebius band and the 
ylinder.Basi
 Assumption. We are only interested in the 
ase where the abelian groups Cp arerelated to an abstra
t 
omplex K. Every 
hain 
omplex (Cp, ∂p)p we 
onsider hen
eforth issu
h that Cp = Cp(K, G) and the boundary maps ∂p are 
ompatible with (K, <). We write
C(K, G, ∂) for su
h 
hain 
omplex.5.6 Example of the C(K, Z/2, ∂) Chain ComplexReturning ba
k to the examples in �gure 19, now we may spe
ify rigorously the group Cp asthe fun
tions from Kp to Z/2 the group of integers modulo 2 (
f. annex C). A 
hain c = e+f
orresponds to the fun
tion c de�ned by c(e) = c(f) = 1 and c(x) = 0 for x 6= e and x 6= f .This 
hain 
an also be written c = 1.e + 1.f + 0.g + 0.h + . . . . It is 
ustomary not to writethe p-
ells with a zero 
oe�
ient (in a

ordan
e with the additive notation). Thus we have
c = 1.e + 1.f (or more ambiguously c = e + f).Representation of the Subsets of K by Cp(K, Z/2). Using Z/2 as the 
hain 
oe�
ientsenables the representation of the presen
e, cp(x) = 1, or the absen
e, cp(x) = 0, of a p-
ell xin a 
hain cp. A 
hain of C(K, Z/2) is then simply the 
hara
teristi
 fun
tion of a subset of
K. But the group stru
ture gives some additional 
apabilities.The elements of this group are {0, 1} and 0 + 0 = 1 + 1 = 0 and 0 + 1 = 1. The groupswhere x + x = 0 for all x are quali�ed as idemgroups. So Z/2 is an idemgroup as well as
C(K, Z/2). Suppose c1 and c2 are given k-
hains with 
oe�
ient in Z/2. Then, c1 + c2 isde�ned to be the k-
hain made up of the k-
ells of c1 or c2 but not in both. In other words,47



the + operation between 
hains 
orresponds to the � symmetri
 set di�eren
e �. Similarly,
c1 + c2 + c3 
onsists of thoses k-
ells 
ontained in just one or all three of the 
hains c1, c2and c3. More generally, the sums of n k-
hains turn out to 
onsist of those 
ells 
ontained inan odd number of the 
hain c1, .., cn. The zero k-
hain (the unique element in Ck su
h that
c + 0 = 0 + c = c for all k-
hain c) is the empty 
hain denoted 0 and 
ontaining no k-
ell.Computation of a Boundary in C(K, Z/2). We have shown that the use of 
oe�
ientsin Z/2 enables the representation of an arbitrary subset. To turn these 
hain groups into a
hain 
omplex, we have to de�ne the boundary operators ∂p. We just de�ne the boundary ofa single p-
ell x as the 
hain that represents the prede
essors of x:

∂p(x) =
∑

y∈Kp−1, y≺x

yand we extends this de�nition by linearity on a p-
hain c =
∑

x c(x)x:
∂(c) =

∑
c(x)∂(x) =

∑

x

∑

y≺x

c(x) yBy de�nition, these boundary operators are homomorphisms and 
ompatible with the posetstru
ture of the abstra
t 
omplex K (there is no other possible de�nition for ∂). Let us seethe e�e
t of this boundary operator on su
h 
hains.Suppose that the 
hain c ∈ Cp(K, Z/2) is 
omposed of two k-
ells s′ and s′; this is denotedby c = s + s′. Suppose than s and s′ share only one 
ell d ∈ Kp−1, see Fig. 20. Then d is notin the border of s be
ause s and s′ are glued along d: d is an interior 
ell. But d is in theboundary of s and in the boundary of s′. Let ∂ps = d +
∑

x′
j and ∂ps

′ = d +
∑

x′′
k. Thenwe must have: d +

∑
x′

j + d +
∑

x′′
k =

∑
x′

j +
∑

x′′
k whi
h is automati
ally a
hieved be
ause

d + d = 0.
s s’
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Figure 20: Example of the appli
ation of the boundary operator on a C(K, Z/2) 
hain.
∂(s + s′) = ∂s + ∂s′ = (a + b + c + d) + (d + e + f) = a + b + c + e + f be
ause d + d = 0.All interior 
ells, i.e. 
ells that have two su

essors, will 
an
el out and only the geometri
boundary 
ells of s will remain. This explain the sense in whi
h the geometri
 boundary of aset of points is a spe
ial 
ase of the more general topologi
al boundary operator de�ned here.An Algebra for Counting the Cells in a Boundary. Note that working with Z/2
oe�
ients avoids the problem of the orientation of ea
h 
ell and en
ounters the problempointed in Fig. 16: orientation is not taken into a

ount, as for abstra
t 
omplex. This
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problem 
an be handled using integer 
oe�
ients Z that enables the pre
ise 
ounting of ea
h
ell, together with its orientation.The group Z/2 provides an algebra for handling 
ertain simple 
ounting operations whereonly the evenness or the oddness of the results is important. The integral 
hain group
C(K) = C(K, Z) provides an algebra for handling these 
ounting operations without thepe
uliar restri
tion to evenness and oddness, see fure 21. The 
hain 2x + 1y − 3z 
ounts the
ell x twi
e, the 
ell y on
e and the 
ell z minus three times. And another abelian 
oe�
ientgroup G provides another kind of 
ounting algebra.
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Figure 21: Examples of two oriented 
omplexes. The two �gures represents two 2-
hains withintegral 
oe�
ient. The 
ells used in the left 
omplex are simpli
ial 
ells, that is, a p-
ell is the 
onvexhull of p + 1 points in R
n. The sign of the 
oe�
ient is used to take into a

ount the orientation ofedges and fa
es. For example, ∂d = 4− 2 and ∂s = a + b− c. Orientation 
an be used to 
an
el out a
oe�
ient: ∂(s+s′) = (a+b−c)+(d−e−b) = a+d−e−c. The 
ells in the right 
omplex are polygonal
ells. They are oriented by giving an order between verti
es. Fa
es are oriented positively from thelow vertex to the high vertex. This example shows that the absolute value of the 
oe�
ient is used to
ount the number of time a 
ell is used: ∂(v+w) = (j−f−e+d)+(g−h−i+d) = j−f−e+g−h−i+2d.5.7 The Stru
ture of the Chain Group with Coe�
ientWe want to 
hara
terize further the 
hain groups with 
oe�
ient. We �rst de�ne the notionof free abelian group and review some useful results. Then we show that the integral 
haingroup is free. We show that any 
hain group with 
oe�
ient in G has the stru
ture of a sumof 
opies of G Finally, we give a representation of Cp(K, G) in terms of Cp(K).Constru
ting a Free Abelian Group From a Basis. An abelian group G is free if ithas a basis, that is, if there is a family {gα}α∈J su
h that ea
h g ∈ G 
an be written uniquelyas a sum g =

∑
nαgα where nα ∈ Z. If G is free and has a �nite basis 
onsisting in nelements, then it is easy to see that every basis for G 
onsists of pre
isely n elements (thisnumber is 
alled the rank). If the basis is not �nite, then any basis has the same 
ardinality.A subgroup of a free group is free.We give now a spe
i�
 way of 
onstru
ting a free abelian group Abel(S) from a basis S.This 
onstru
tion will be used elsewhere. If the set S is �nite, we say that Abel(S) is �nitely
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generated. Given a set S, not ne
essarily �nite, we de�ne the free abelian group Abel(S)generated by S to be the set of all total fun
tions ϕ : S → Z. We add two su
h fun
tionsby adding their values. Given x ∈ S, there is a 
hara
teristi
 fun
tion ϕx for x, de�ned bysetting ϕx(x) = 1 and ϕx(y) = 0 for y 6= x. The set of fun
tions {ϕx | x ∈ S} form a basis for
Abel(S), that is, ea
h fun
tion ϕ ∈ Abel(S) 
an be written uniquely as a sum ϕ =

∑
x∈S axϕxwhere ax = ϕ(x).We often abuse notation and identify the element x ∈ S with its 
hara
teristi
 fun
tion

ϕx. With this notation, the general element of Abel(S) 
an be written uniquely as a formallinear 
ombination ϕ =
∑

axx where ax ∈ Z and x are elements of the set S. The set ofelements that 
an be written as a �nite sum is a subgroup Abelfinite(S) of Abel(S). If Abel(S)is �nitely generated, then Abelfinite(S) = Abel(S) but this is not in general the 
ase.We 
an relate the group Abel(S) and the 
onstru
tions of dire
t produ
t and externaldire
t sum of groups introdu
ed in annex C. It is easy to show that Abel(S) =
∏

x∈S Gxwhere Gx = Abel({x}). AndAbelfinite(S) is the so-
alled external dire
t sum of the groups Gx:
Abelfinite(S) =

⊕
x∈S Gx. Conversely, if G is a dire
t sum or a dire
t produ
t of in�nite 
y
li
subgroups, then G is a free abelian group. The quali�er � dire
t � in the produ
t or in thesum, is for the uniqueness of the sum denoting an element. If G =

∏
Gx, then this produ
tis dire
t if and only if the equation 0 =

∑
gx implies that gx = 0 for ea
h x. This in turno

urs if and only if for ea
h �xed x, one has Gx ∩

(∑
y 6=x Gy

)
= {0}.The Free Stru
ture of C(K). The resemblan
e of Cp(K) = Cp(K, Z) to free abelian groupsis strong. And indeed Cp(K) is a dire
t sum of in�nite 
y
li
 groups

Cp(K) =
⊕

x∈Kp

Abel({x̂}) ≃
⊕

x∈Kp

Abel({x}) ≃
⊕

Kp

Zwhere the fun
tion x̂ : Kp → Z is spe
i�ed by x̂(x) = 1 and x̂(y) = 0 for y 6= x. Usually, weidentify Abel({x̂} and Abel({x}) as well as x̂ and x. In addition, Abel({x}) ≃ Z (just usethe isomorphism nx 7→ n). Then, if Kp is �nite with 
ardinality n, we have Cp(K) ≃ Z
n.Definition 9 (The free Chain Group). The dire
t sum of a sequen
e of free abelian groupsis again a free abelian group. Using this fa
t we may form the integral 
hain group :

Chains(K) = C0(K)⊕ C1(K)⊕ ...⊕ Cn(K)⊕ ...Note that if there is no 
ells in Kq , then we set Cq(K) = 0 (the trivial group).By de�nition (see annex C), ea
h element of C(K) is a sequen
e (c0, c1, ..., cn, ...) where
cp is an integral p-
hain of Kp and where there is only a �nite number of ck that are nonzero.Su
h a weak dire
t sum is often 
alled a graded group.The Sum Stru
ture of the Cp(K, G). It is easy to show that Cp(K, G) has also thestru
ture of a dire
t sum. Consider the set of the total fun
tions x̂ : Kp → G su
h that
x̂(y) = 0G for all y 6= x. This set is a group Gx for the addition of fun
tions and Cp(K, G) =⊕

Gx. However, Cp(K, G) is not free be
ause the Gx are not ne
essarily free. Consider for50



example the group G = Z/2; then 1.x̂ + 1.x̂ = 0(Kp→Z/2) for all 
ell x, whi
h show that Gx isnot free.Now, ea
h Gx is obviously isomorphi
 to G (by the mapping c 7→ c(x)). Then, wehave in general Cp(K, G) ≃
⊕

Kp
G and this justify the sum notation for an element. Anelementary 
hain c whi
h asso
iates g ∈ G to the p-
ell x is written gx. If Kp is �nite with
ardinality n, then Cp(K, G) ≃ Gn. The 
hain group with 
oe�
ient in G is de�ned by:

Chains(K, G) = C0(K, G) ⊕ C1(K, G) ⊕ . . .5.8 Duality: Co
hain, Coboundary and Co
hain ComplexWe want now give a very slight generalization of the notion of 
hain by de�ning 
o
hains.This generalization has several motivations: it allows the handling of � in�nite � 
hains; itmakes able to relate the 
hain group with arbitrary 
oe�
ient with the integral 
hain group;and �nally it introdu
es naturally a dual of the ∂ operator.Chains with Coe�
ient in G as Homomorphisms from Cp(K) to G. We de�ned a
hain to be a fun
tion from the p-
ells to an abelian group G, but using linear extension we
an and will 
onsider a 
hain to be a fun
tion on integral 
hains.For let cp =
∑

αixi where ea
h αi is in G and ea
h xi is in Kp. Let dp =
∑

njxj be anintegral 
hain (i.e. nj belongs to Z). We may then de�ne the value of cp on dp by
cp(dp) = cp

(∑

j

njxj

)
=

∑

j

nj . cp(xj) =
∑

j

njαjClearly ∑
j njαj is an element of G sin
e njαj is the nj-fold sum αj + · · ·+ αj .For a �xed 
hain cp, this operation yields a homomorphism of Cp(K) into G. However,if Kp is not �nite, then the set Cp(K, G) of 
hains with 
oe�
ient in G does not 
ontainall the homomorphisms between C(Kp) and G. For example, suppose g ∈ G, g 6= 0, then hde�ned by h(x) = g for all x is an homomorphism whi
h 
annot be represented by a �nitesum: h =
∑

x∈Kp
g x 
ontains as many terms as Kp has elements. This motivate to 
onsiderin�nite sums to retrieve all the homomorphisms.Definition 10 (Co
hains). A p-
o
hain on the 
omplex K with 
oe�
ient in G is a totalfun
tion cp from the set Kp to the abelian group G. The set of p-
o
hains on the 
omplex Kwith 
oe�
ient in G is a free abelian group (for the pointwise addition of fun
tions) written

Cp(K, G), and we have: Cp(K, G) = Hom(Cp(K), G).The notation Hom(A,B) denotes the set of homomorphisms between a group A and agroup B. This set is a group for the pointwise addition of fun
tions. The di�eren
e betweena 
o
hain cp and a 
hain dp is that cp is not ne
essarily zero almost everywhere. Then:� Every 
hain is a 
o
hain but not 
onversely.� The set of 
hains Cp(K) is a subgroup of Cp(K).
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� However, the two groups Cp(K, G) and Cp(K, G) are identi
al in the 
ase of a �nite
omplex K or if Kp is �nite.To distinguish between the 
hains and 
o
hains (if needed), we are following the 
urrentpra
ti
e in using subs
ripts to indi
ate the dimension of 
hains and supers
ripts to give thedimensions of 
o
hains.The 
o
hain cp 
an also be written as a sum cp =
∑

x∈Kp
αxx but this sum is not ne
essarily�nite. Saying that cp =

∑
x∈Kp

αxx is equivalent of saying that cp(x) = αx for all x in Kp.The Chara
terization Cp(K, G) = Hom(Cp(K), G) and the Sum Notation. From thepresentation of 
o
hains as (possibly in�nite) sum, we dedu
es that Cp(K, G) is the group
Hom(Cp(K), G). We 
an 
hose this latter result as the de�nition of 
o
hains and re
over therepresentation of a 
o
hain as a (possibly in�nite) sum. The group Cp(K) is the free abeliangroup generated by the element of Kp and therefor, Cp(K) =

⊕
x∈Kp

Gx where Gx is the freegroup generated by x. Then11: Hom(Cp(K), G) = Hom(
⊕

x∈Kp
Gx, G) ≃

∏
x∈Kp

Hom(Gx, G).An element of Hom(Gx, G) is an homomorphism h that asso
iates to an element n.x of
Gx an element n.gx where gx = h(1.x). We denote this element by gxx. An element of∏

x∈Kp
Hom(Gx, G) 
an be written as a sum of elements belonging to the fa
tors, be
ause thesegroups are distin
ts. Thus, an element cp of Cp(K, G) 
an be written as a sum ∑

x∈Kp
gxxwhere gx = cp(x) and this gives the previous sum notation for a 
o
hain.The Krone
ker Index. In pla
e of the fun
tional notation, it is often 
onvenient to use aprodu
t notation. That is, we use cp.dp to denote the value of cp on dp rather than the morefamiliar notation cp(dp). The result of this � produ
t � is 
alled the Krone
ker index of cpand dp.Consider two p-
ells x and y. They 
an be viewed as the two elementary integral 
hains

xp = 1.x and yp = 1.y and also as the two elementary integral 
o
hains xp and yp (a 
hain isa 
o
hain). Then we have: xp.yp = yp.xp = 0 if x 6= y and xp.xp = 1 elsewhere.We have mentionned the dimension in subs
ript or in supers
ript to make 
lear whatobje
t is at hand, but we shall delete them when there is no 
onfusion.Dual Homomorphisms, Coboundary Operators and Co
hain Complex. The abeliangroup Cp(K) is a Z-module and the group Hom(Cp(K), Z), wi
h is also the set of integral
o
hains Cp(K), is a Z-module 
alled the dual of Cp(K) (see annex C). This notion of du-ality is the dire
t generalization for modules of the dual of a ve
tor spa
e. Intuitively, if one
onsider a 
hain as � ve
tors �, then the 
o
hains are the � linear forms �. We 
an go furtherin the analogy with the notion of dual homomorphism.Definition 11 (Dual Homomorphism). A homomorphism σ : A→ B gives rise to a dualhomomorphism
Hom(A,G)

eσ
←−− Hom(B,G)11We use the following result: the homomorphisms from the weak dire
t sum of the Pi to a group G isisomorphi
 to the dire
t produ
t of the homomorphisms from Pi to G.52



going in the reverse dire
tion and de�ned by: σ̃(ϕ) = ϕ ◦ σ.Definition 12 (Coboundary Operator δ). We de�ne the 
oboundary operator δ as thedual of ∂: δ = ∂̃. The operator ∂p+1 on integral 
hains is an homomorphism from Cp+1(K)to Cp(K), thus
δp = ∂̃p+1 : Cp(K, G) −→ Cp+1(K, G)so that δp raises dimension by one. The e�e
t of operator δp is de�ned by:
(δpcp) . dp+1 = cp . (∂p+1dp+1)Definition 13 (Co
hain Complex ). We de�ne the (homologi
al) abstra
t 
o
hain 
omplexsimilarly to the 
hain 
omplex. We write C(K, G, δ) for the sequen
e (Cp(K, G), δp)p≥0 wherethe 
oboundary operators are homomorphisms with signature as follows:
C1(K, G)

δ1

−−→ C2(K, G)
δ2

−−→ C3(K, G)
δ3

−−→ · · ·The abelian group Cochains(K, G) = C0(K, G)⊕C1(K, G)⊕ . . . is 
alled the 
o
hain group.An abstra
t 
o
hain 
omplex C(K, G, δ) is said homologi
al or 
alled a graded di�erentialgroup with operator δ, i� for all p, δp+1 ◦ δp = 0.De�ning ∂, then there is a unique δ dual operator, and vi
e-versa. If ∂p ◦ ∂p+1 = 0,then by duality we have also δp+1 ◦ δp = 0. Thus, if C(K, G, ∂) is an homologi
al abstra
t
hain 
omplex, then C(K, G, δ), where δ is the dual of ∂, is an homologi
al abstra
t 
o
hain
omplex.A fundamental di�eren
e between ∂ and δ is that ∂x depends only on (the 
losure of) xwhile δx depends on how x lies in the 
omplex K. Furthermore, it is possible that x is a 
ellbelonging to the boundary of in�nitely many 
ells, even if the 
omplex K is 
losure-�nite.Thus δx is not ne
essarily a �nite sum. However, in the following we want to 
onsider onlylo
ally-�nite 
omplex K. Then if we take the boundary or the 
oboundary of a 
hain, weobtain a 
hain again.Geometri
 Interpretation of δ. The de�nition of δ is highly algebrai
 in nature. But it ispossible to �gure the geometri
 meaning of δ. The dual of a poset (E,<) is the poset (E,>)with the reverse order between elements. Then we 
an de�ne the analog of ∂ : Kp → C(K)for the dual poset. Let δ′ be this operator. Following the de�nition of ∂, we must have
|δ′(x)| = {y | x ≺ y}.When 
onsidering both ∂ and δ′ together, we need to ensure some 
onsisten
y betweenthe 
oe�
ients asso
iated to ea
h boundary or 
oboundary element. Let x be an element of
Kp−1 and y an element of Kp. Then the 
oe�
ient of x in the 
hain ∂y is (∂y)(x) = (∂y).xusing the Krone
ker notation. If x is in the boundary of y, then x ∈ |∂y| and (∂y).x 6= 0.However, if x ∈ |∂y| then x ≺ y and then y ∈ |δ′x|. This means also that (δ′x).y 6= 0. Theproblem is to relate (∂y).x and (δ′x).y.Remark that both (∂y).x and (δ′x).y are zero or nonzero together. A natural and simple
onstraint is to set (∂y).x = (δ′x).y. If this 
onstraint is satis�ed, we say that ∂ and δ′ aredual operators. Figure 22 shows some example of this 
onstraint.53



We rewrite the property by remarking that (∂y).x = x.(∂y) whi
h makes the statment ofthe equality more symmetri
 and we re
over the de�nition 12 of δ by linearity. We 
an sum-marize: the 
oboundary operator 
oin
ides with the boundary operator in the dual abstra
t
omplex. This gives also the interpretation of δ as a transport operation, see next se
tionand illustration in �gure 24.One 
omes to re
ognize the relation cp.(∂dp+1) = (δcp).dp+1 as a 
ombinatorial formof Stokes'theorem [Sha90℄. The Stoke's formula links the di�erential of a form ω and theboundary operator of a domain V : ∫
∂V ω =

∫
V dω. Take for example p = 2, then dp+1 is avolume. Interpret cp as the integral (the sum) of a form (the 
oe�
ients of the 
ells in cp) onsome domain (the integral 
hain dp). The equality says that the value taken by the fun
tion

cp on the surfa
e boundary equals the value taken by the new form δcp on the volume. Thisremark 
an be greatly re�ned, see for instan
e [Ton74, Ton76, CS00℄.
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dFigure 22: Example of dual ∂ and δ operators. We work in the integral 
hain group. For the
omplex to the left, we have δx = z and ∂y = a + b + c. Then, (δx).y = x.(∂y) = 0. For the 
omplexin the middle, we have |δx| = {y, z} and |∂y| = {x, d, e}. If we de�ne ∂y = x + d + e, then x.(∂y) = 1whi
h implies that (δx).y is nonzero. Duality further �xes the 
oe�
ient (δx).y = 1. For the 
omplexto the right, we may spe
ify ∂y = 2x to state that the vertex x is en
ounter two times, at the twoends of the edge y. But then, we must �x (δx).y = 2, that is δx = 2y to ensure the duality of ∂ and
δ. The 
ondition δx = 2y 
an be interpreted as: the edge y is 
onne
ted two times to the vertex x.5.9 Arbitrary Labeling the Cells of a ComplexSuppose we want to label some of the 
ells of a 
omplex with values taken in an arbitrarysetVal . Su
h labeling 
an be represented by a partial fun
tion ℓ from K toVal . This partialfun
tion 
an be extended into a total fun
tion given the value ⊥, ⊥ 6∈Val , to the 
ells thathave no image by ℓ. Then, the fun
tion ℓ 
an be seen as a 
hain if we give an abelian groupstru
ture toVal ∪ {⊥}. We review two possibilities amongst others.Labeling with Idem(Val). We 
an use the abelian idemgroup generated byVal . This groupis denoted by Idem(Val). It 
ontains all the subsets ofVal written as sums, and the element
0 is the the empty set. We identify ⊥ with 0 and a value v ∈ Val with the 
orrespondingsingleton in Idem(Val). Then we 
an write ℓ =

∑
x∈K ℓx x where ℓx = ℓ(x) if ℓ(x) is de�nedand 0 otherwise. An example is given in �gure 23.Note that using the group Idem(Val) instead of the setVal asso
iates a
tually a subset of

Val to ea
h 
ell. By indentifying the singletons with the elements ofVal , we represent thedesired labeling in a natural way. Partiality is handled using 0 to represent ⊥ 6∈Val .
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ℓ(1) = δ, ℓ(2) = α
ℓ(3) = β, ℓ(4) = γ
ℓ(a) = ρ, ℓ(b) = κ
ℓ(c) = σ, ℓ(d) = τ
ℓ(s) = ωand ℓ(x) unde�ned for the others x.
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K0 = {1, 2, 3, 4, 5}

K2 = {s, s′}
K1 = {a, b, c, d, e, f}

κ τ

ρ

σFigure 23: The labeling of the 
ell of an abstra
t 
omplex. The �gure in the left gives theabstra
t 
omplex K and its p-
ells Kp (for p = 0, 1, 2). The labeling ℓ is de�ned on the right. In thisdiagram, we indi
ate the images of the fun
tion ℓ by writing next to ea
h 
ell the value of the fun
tionon that 
ell. This fun
tion has for 
odomain the setVal = {α, β, γ, δ, ρ, τ, σ, κ, ω} whi
h do not havean a priori abelian group stru
ture. The fun
tion ℓ 
an be written as a 
hain of C(K, Idem(Val)):
ℓ = δ.1 + α.2 + β.3 + γ.4 + ρ.a + κ.b + σ.c + τ.d + ω.s. Note however that in C(K, Idem(Val)) there arealso 
hains like (α +Idem(Val) β).1 whi
h would represents a fun
tion f su
h that f(1) = {α, β} andunde�ned elsewhere.Labeling with Abel(Val). One 
an also use Abel(Val) instead of Idem(Val). We rely onthe inje
tion x 7→ x to represent an element ofVal by an element of Abel(Val). This grouphas a ri
her stru
ture and enables the asso
iation of a 
ell to a � generalized multiset � ofValelements. In a generalized multiset, an element 
an have a negative multipli
ity.Remark that ifVal has already a group stru
ture +, the operation in Abel(Val) does not
oin
ide with the operation +Abel in Abel(Val). Take for exampleVal = Z, then x+Abel(−x) 6=

0Abel. Indeed, both x and (−x) are generators of Abel(Z) and they are distin
t.Boundary and Coboundary as Transport Operation. In an arbitrary labeling of a
omplex, we 
an interpret the ∂ and δ operations as transport operations, see �gure 24 andthe referen
es [Ton74, Ton76, PS93℄.Suppose that we want to valuate the 
ells of the 
hains by an element ofVal . We use theprevious en
oding based on Abel(Val) for the 
hain 
oe�
ients. We de�ne the boundary of a
ell x by:
∂x =

∑

y≺x

y and extend ∂ linearly: ∂(
∑

αxx) =
∑

αx∂xConsider a 
ell x that have several su

essors in the 
hain. Then the e�e
t of ∂ as a transportoperation is to send to x the 
oe�
ients of theses su

essors. The result is 
onvenientlygathered as a formal sum in Abel(Val) and no 
oe�
ients are lost (using Idem(Val) insteadof Abel(Val) then we 
an re
ord only the 
oe�
ients that appear an odd number of times).We 
an then further interpret � the 
ollision at 
ell x of the transported values � using anhomomorphism to resolve the � 
ollisions � and to 
ompute the �nal value of x.To be more 
on
rete, suppose that the 
ells in �gure 24 (left) are valuated by reals, thatis, we 
onsider 
hains in C(K,Abel(R)). For instan
e, take ω = 1.6 and ω′ = 3.1 in 
hain ℓ2.Then
∂(1.6s + 3.1s′) = 1.6a + 1.6b + 1.6c + (1.6 +Abel 3.1)d + 3.1f + 3.1e55



We say that the value 1.6 
oming from s and the value 3.1 
oming from s′, 
ollide at 
ell d.We want to 
ombine 
olliding values into a real to get again a real valued 
hain. Supposethat the 
ombination fun
tion is the sum of reals. Then we would use the homomorphism
h from Abel(R) to (R,+) that interpret the +Abel as the usual +R. The homomorphism hbetween the groups of values, is easely extended into an homomorphism on 
hains, by de�ning
h(αx) = h(α)x for all 
ell x and then using linearity.Instead of using a fun
tion h to 
ombine the 
olliding values, we 
an work dire
tly with
hains in C(K, (R,+)). In this way, the 
ombining fun
tion is dire
tly the group operationof the 
hain 
oe�
ients. However, using Abel(R) and then an a posteriori homomorphism his more general. For instan
e, suppose that we work with 
oe�
ients in (R,+) but we wantto 
ombine the 
olliding values by multipli
ation. This is not easely expressed. But using
Abel(R) at the �rst pla
e, we have just to 
hange the fun
tion h.Intuitively, one 
an see the interest of using an abelian group for the 
oe�
ients. The
ombination fun
tion must not depend on the order of the 
ombinations and then the 
hain
(α + β)x must be equal to the 
hain (β + α)x.

ρ

σ

τκ τσ + κ + τ + ρω

ω

ω

ω

ω + ω′

ω
′

ω′

ω′Figure 24: Depi
tion of the boundary and 
oboundary operation on 
hains. We 
onsiderthe abstra
t 
omplex already used in �gure 23. The e�e
t of taking the boundary operator ∂ on
ℓ2 = ω.s+ω′.s′ is pi
tured by the diagram in the left. The �gure in the right gives the e�e
t of takingthe 
oboundary δ of the 1-
hain ℓ1 = ρ.a + κ.b + σ.c + τ.d. In these two �gures, the 
urved arrowindi
ate values (in bold) being transferred from a p-
ell to the pre
eding (p− 1)-
ells (for ∂) and froma p− 1-
ell to the su

eeding p-
ells (for δ).5.10 Topologi
al Colle
tionsA topologi
al 
olle
tion asso
iates a value to some 
ells of a 
omplex. In addition, we mustbe able to speak of the 
arrier of the 
olle
tion (the 
ell that have a value), of the neighborof an element, of sub
olle
tion and of the boundary of a sub
olle
tion. All these notions
an be developped on top of the notion of 
hain 
omplex presented above. The previousparagraph showed how arbitrary values 
an be asso
iated to the 
ells using the notion of
hain (or 
o
hain). But then, it misses the representation of the 
oe�
ients used to 
omputethe boundary stru
ture.The idea is naturally to represent both the 
oe�
ients in B and the label in Abel(Val).However, using the group G = B × Abel(Val) seems at �rst sight not adequate: all the
ells (0B , α) are distinguished although they represent the same absen
e of a 
ell in a 
hain(be
ause the 
oe�
ient 0B) and then the value α does not matter. However, the de�nition
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of an alternative to the 
artesian produ
t is not easy at all. For example, the 
onstru
tion(
B × Abel(Val)

)
/

(
{0B} × Abel(Val)

) 
ollapses all the values (0B , α) to 0B×Abel(Val). But,all values (g, α) are 
ollapsed on (g, 0) whi
h is 
ertainly not what we want. So, does existsa produ
t with proje
tion π1 and π2 su
h that π2x = 0 whenever π1x = 0? Suppose thatthe group of 
oe�
ients used to 
ompute the boundary is Z/2; and suppose we have three
2-
ells a, b and c su
h that ∂a = 1+2, ∂b = 1+3 and ∂c = 1+4 (imagine a graph with threeedges and four verti
es, the edges are linked by one end to the vertex 1 and to the other endto a unique vertex). We have ∂(a + b + c) = 1 + 2 + 3 + 4 so it seems that it is natural tohave ∂(α.a + β.b + γ.c) = (α + β + γ).1 + α.2 + β.3 + γ.4. But the term (α + β + γ).1 isobtained as α.1 + β.1 + γ.1. If the values (0, ε) are identi�ed with (0, 0), then by 
omputing�rst (α.1 + β.1) + γ.1 we obtain the result γ.1 while 
omputing α.1 + (β.1 + γ.1) we obtain
α.1. So, there is no produ
t having the wanted property and we use simple the 
artesianprodu
t.Definition 14 (Topologi
al Colle
tion).A topologi
al 
olle
tion shape is a triple S = (K, B, ∂) su
h that K is a lo
ally �niteabstra
t 
omplex of �nite dimension and C(K, B, ∂) is an homologi
al 
hain 
omplex. Atopologi
al 
olle
tion type is a pair of T = (S,Val) where S is a shape and Val is anarbitrary set. A topologi
al 
olle
tion is a pair (T , c) where T is a topologi
al 
olle
tiontype ((K, B, ∂),Val ) and c is a 
o
hain: c ∈ Cochains(K, B ⊙Val). The produ
t B ⊙Valdenotes the 
artesian produ
t B × Abel(Val). The set of 
olle
tions with a given type T isdenoted by TC(T ); the set of 
olle
tions with a given shape shape S is written TC(S); theset of 
olle
tion on a given 
omplex K is written TC(K), et
.Often we omit to mention the shape or the type T of the topologi
al 
olle
tion when itis 
lear from the 
ontext; we says dire
tly that a 
hain c is a topologi
al 
olle
tion and wewrite c ∈ T or c ∈ S if S is the shape and T the type of c.The 
o
hain group Cochains(K, B ⊙Val) is 
alled the full 
o
hain group asso
iated tothe type T . The 
o
hain group Cochains(K, B) is 
alled the shape 
o
hain group asso
iatedto T . And Cochains(K,Abel(Val)) is 
alled the value 
o
hain group.If c is a 
olle
tion, and x ∈ Kp, then c(x) = (g, u) with g ∈ B and u ∈ Abel(Val) andwe say that the value of c at x is u. The fun
tions cb and cv are the �rst and se
ondproje
tion of c. That is, cb(x) = g and cv(x) = u for c(x) = (g, u). The fun
tions cb and
cv asso
iate an element of a group to a 
ell and then are 
o
hains: cb ∈ Cochains(K, B) and
cv ∈ Cochains(K,Abel(Val)).For all 
olle
tion c we have |cv | ⊂ |c| and |cb| ⊂ |c|. The set Residu(c) = {x ∈ K | cb(x) =

0B and cv(x) 6= 0Abel(Val)} is 
alled the residu of the 
olle
tion. We usually omit the sub-s
ripts of 0 and rely on the 
ontext to make 
lear on whi
h group 0 belongs. A 
olle
tion cis residu-free if Residu(c) = ∅.A topologi
al 
olle
tion c is �at if cv(x) = 0 or cv(x) ∈Val for all x ∈ K. It is monolayerif cb is a p-
o
hain for some p, i.e. it exists an integer p su
h that |cb| ⊂ Kp.Integral and Modulo 2 Shapes. An important 
ase is when B = Z or B = Z/2. In this
ase, we say that a 
hain c has an integral shape or a modulo 2 shape respe
tively. We use57



a spe
ial notation for integral and modulo 2 
hain:
c =

∑
αx.nxxwhere nx ∈ Z or Z/2, and αx ∈ Abel(Val). But the terms α.(−1)x are written simply −α.xand α.x is for α.1x. For instan
e, c = "ab
".2x − "def".y + "rosae".z stands for a 
hain csu
h that: c(x) = (2, "ab
"), c(y) = (−1, "def") and c(z) = (1, "rosae").Sub
olle
tions. We need now to introdu
e the notion of sub
olle
tion of a 
olle
tion.The restri
tion c\S of a topologi
al 
olle
tion c by a set S is the 
hain c\S de�ned by

(c\S)(x) = c(x) if x ∈ S and else (c\S)(x) = 0. A restri
tion is too general to represent asub
olle
tion: a sub
olle
tion is a 
onne
ted part of a 
olle
tion. It must be represented bya 
hain too.Definition 15 (Split, Pat
h and Sub
olle
tion). Let c be a 
o
hain and c′ and c′′ be two
o
hains su
h that |c′| ∩ |c′′| = ∅ and c = c′ + c′′. Then we say that c′ and c′′ are a split ofthe 
o
hain c and we write c D c′, c D c′′ and c′′ = ∁cc
′ or c′ = ∁cc

′′. A 
o
hain c′ is a pat
hof the 
o
hain c ∈ Cochains(K, G), if c D c′ and if Shape |c′| is a 
onne
ted set of K. Let c bea 
olle
tion; a 
olle
tion c′ is a sub
olle
tion of c if c′ = c\|c′| and if c′b is a pat
h of cb.5.11 TransformationsWe want now de�ne several kinds of transformations of a topologi
al 
olle
tion.Definition 16 (Shape-preserving, Pointwise and Lo
al Operations).A fun
tion f from TC(S,Val) to TC(S,Val ′) is shape preserving i� for all c, (fc)b = cb.It is pointwise if it is shape preserving and if it exists a fun
tion g : Abel(Val)→ Abel(Val ′)su
h that (fc)v = g ◦ cv . It is lo
al if it is shape preserving and if it exists a fun
tion
g′ : TC(S,Val)→ Abel(Val ′) su
h that (

fc
)
v
(x) = g′

(
c\(Stx)

).Variations on the notion of lo
ality are obtained by 
hanging Stx for Stx or Lkx or |x|,et
.Definition 17 (Renaming Operations). Let h be a bije
tion from K to K′. Then, therenamed 
omplex K′ = h(K) is su
h that dimK′ x′ = dimK h−1(x′) and x′ ≺K′ y′ i�
h−1(x′) ≺K h−1(y′). If S is a 
olle
tion shape (K, B, ∂), then the renamed shape S ′ = h(S)is de�ned by S ′ = (K′, B, ∂′) where the boundary operator ∂′ is de�ned by: ∂′x′ =

∑
gyh(y)if ∂h−1(x′) =

∑
gyy. The renaming of the 
olle
tion c into h(c) is a fun
tion from TC(S)to TC(h(S)) su
h that h(c)(x) = c(x).h(x).We 
an now de�ne the basi
 transformation des
ribed in se
tion 2.1 page 12. The basi
intuition hidden behind this de�nition is sket
hed in �gure 25. Note that we do not des
ribea devi
e to sele
t a sub
olle
tion into a 
olle
tion, neither we give 
ondition on the gluing ofthe substituted sub
olle
tion. We just spe
ify that untou
hed parts of the 
olle
tion mustremain untou
hed, both from the value point of view (
ondition 1) and the shape point ofview (
ondition 2).
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Definition 18 (Split, Pat
h and Non-Lo
al Substitutions). Let c and d be 
olle
tionswith respe
tive sub
olle
tions c′ and d′. Then d is a pat
h substitution of c′ by d′ if the twofollowing 
onditions hold:1. ∁cc
′ = ∁dd

′2. Shape |∁cc
′| = Shape |∁dd

′|If we relax the 
onne
tivity 
ondition on d′, then we say that we have a split substitution. Ifthe 
ondition is also relaxed for c′, then we have a distributed (split or pat
h) substitution.If it exists a fun
tion f su
h that d′ = f(c\|St c′|) then the substitution is said 
omputedby f . In addition, the substitution is 
oboundary preserving if δc′b = δd′b and boundarypreserving if ∂c′b = ∂d′b.The �gure 26 gives several examples of various kinds of substitution.Note that the operator ∂ and its dual δ de�ned for a 
olle
tion do not appear expli
itlyin the straight de�nition of a substitution. However, they 
omes into play when one has tospe
ify pre
isely the pro
ess of gluing d′ and c′′ into the new 
olle
tion d.There is several variations on the notion of � 
omputed by f � to a

omodate the possiblevariation on the neighborhood notion.Definition 19 (Simple Transformation). We say that d is a simple transformation oftype n of c i�:� type I: it exists a pointwise or a lo
al fun
tion f su
h that d = f(c);� type II: d is a renaming of c;� type III: it exists sub
olle
tions c′ and d′ of c and d su
h that d is a pat
h substitution;� type IV: idem but with a split substitution;� type V: idem but with a non-lo
al substitution.A pointwise fun
tion is a pat
h-, boundary and 
oboundary preserving- substitution 
om-puted by a fun
tion. The 
urrent version of the MGS interpreters allow only this kind ofsubstitutions, see se
tion 6.
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(
)

(b)
Shape(∁cc

′)

dim n

(a) Shape(c′)

Figure 25: Parts of a 
omplex involved in a substitution.We have pi
tured symboli
ally the abstra
t 
omplex K as a Hasse diagram (
f. Fig. 18). The 
arrierof the monolayer 
hain c 
onsists in all the n-
ells pi
tured as 
ir
le (diagram (a)). The three bla
k
ir
les in the middle spe
ify the 
arrier of the sub
olle
tion c′. Consequently, the four empty 
ir
lesare the 
arrier of c′′ = ∁cc
′.The shape Shape(c′) of c′ is sket
hed as the gray region in diagram (a): the sub
omplex |c′| spannedby c′ is in dark gray while the p-
ells above this sub
omplex are in light gray. The shape Shape(c′′)is sket
hed in gray in diagram (b). This part of the 
omplex must remain un
hanged a
ross thesubstitution.The diagram (
) has two gray regions, one near the top and one near the bottom (ea
h is 
omposedof several parts). The region near the bottom, 
orresponds to the interse
tion Shape(c′) ∩ Shape(c′′).Cells in this region have a dimension less than n. The de�nition of a substitution says that this regionmust remain un
hanged in the �nal result (be
ause the belongs to the shape of c′′ and then must notbe tou
hed by the transformation).The region near the top 
orresponds to the p-
ells x, p > n, su
h that x has an interse
tion both in

|c′| and |c′′|. The de�nition of a substitution does not say anything about su
h 
ells. However, if the
n + 1-
ells remain identi
al a

ross the transformation, then the transformation is said 
oboundarypreserving. 60



(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)Figure 26: Substitutions in a line graph.The shape of the 
olle
tion c is a line graph with 7 verti
es. The 
olle
tion is monolayer and we assumethat all verti
es have a value. The �rst diagram indi
ates the sub
olle
tion c′ with shape Shape(c′)indi
ated in bold (bold edges and/or bold verti
es, however note that only the verti
es appear in the
hain c′). The split c′′ = ∁cc
′ are the verti
es draw as empty 
ir
les. The dotted edges are the 1-
ellsthat are not in Shape(c′) nor in Shape(∁cc

′). The other diagrams give several possible substitutions ofthe sub
olle
tion c′. The shape of the substituted 
olle
tion d′ is pi
tured in gray. The dotted edgesdo not belongs to Shape(c′′) or to Shape(d′): they are dependant of the substitution pro
ess. One 
animagine that they 
ome from the handling of the p-
ells, p > n that are neither in Shape(c′) nor in
Shape(∁cc

′) (in the 
urrent version of MGS, this handling is �xed and depends of the 
olle
tion kind,i.e. the type of the underlying topology). Be
ause a 
olle
tion is a 0-
hain, there is no interse
tionbetween Shape(c′) and Shape(c′′), so there is no 
onstraint in the 
olle
tion d′. All examples arenon-distributed substitutions. Examples (e) and (f) are split substitution. Example (d) and (i) areexamples where the 
hain d′ is redu
ed to 0 but the underlying topology is nevertheless 
hanged.Be
ause 
hains are 0-
hains, all transformations are ne
essarily boundary preserving (be
ause theboundary of a 0-
ell is 0). Examples (a � 
, g) are 
oboundary preserving: this implies that the dottededges are identi�ed with the dotted edge in the initial 
olle
tion.61



5.12 The Example of a 2D GridTo illustrate the previous notions, we gives here a possible model for 2D arrays. Topologi
alstru
ture for set, multiset and sequen
e are sket
hed in the next se
tion.Two dimensional grids will be rendered by �at, monolayer topologi
al 
olle
tions. Fromthis point of view, an array is a labeled graph: values are 
arried by verti
es and the 
onne
-tions rely on edges.For, we de�ne the abstra
t 
omplex (G, <) by
G0 = Z× Z,

G1 =
{
{x, y} | x, y ∈ G0, x− y = (0, 1) or x− y = (1, 0)

}

x ≺ {x, y} and y ≺ {x, y} for x, y ∈ G0The abstra
t 
omplex G is not �nite but lo
ally-�nite. The shape of a 2D grid is the triple
(G, Z/2, ∂) with ∂ de�ned by:

∂x = 0, for x ∈ G0 and ∂{x, y} = x + y, for x, y ∈ G0The shape of a 2D grid is homologi
al, be
ause, for u ∈ G1, ∂2u = ∂(
∑

x∈G0
x) =

∑
0 = 0be
ause ∂x = 0 for x ∈ G0.A data �eld with element inVal is an element of the full 0-
o
hain group C0(G, Z/2⊙Val).A data �eld generalizes the notion of array 
onsidering non re
tangular shapes for fun
tionalarrays, see [GMS96, Lis93℄. A data-�eld is a monolayer 
olle
tion.Let x = (a, b) be in G0, then

St(x) =
{

(a, b), (a− 1, b), (a + 1, b), (a, b− 1), (a, b + 1),

{(a, b), (a − 1, b)}, {(a, b), (a + 1, b)}, {(a, b), (a, b − 1)}, {(a, b), (a, b + 1)}
}Then, it must be obvious that a type I transformation repla
es the value of a vertex x by avalue 
omputed from the 4-neighbors (the so-
alled Von-Neuman neighborhood) of x. See�gure 27.

(2,3) (3,3)

{(1,2), (1,3)}

(1,4)

{(3,3), (3,4)}{(0,3), (1,3)}

Stx

Stx

xFigure 27: Modelling of 2D grids.5.13 SummaryWe have de�ned a topologi
al 
olle
tion c to be a 
hain on a given 
hain 
omplex thatdes
ribes the topology of the 
olle
tion and a labeling of the 
ells. A substitution repla
es a62



sub
hain c′ by another sub
hain, preserving the topologi
al stru
ture of the 
omplement of
c′ in c: ∁cc

′. What remains to be done is:� to devise various devi
es to spe
ify the sub
olle
tion to be substituted;� to design several 
onstru
tions, available at user-level, to spe
ify how the new 
olle
-tion d′ must be inje
ted into the old one at the pla
e of c′.A
tually, the strategy implemented in the 
urrent version of the MGS interpreters embeeds thenew 
olle
tion into the old one using a �xed strategy depending on the 
olle
tion type. Thesestrategies are des
ribed in the next se
tion. Thus, it is not possible to 
hange the topolog-i
al stru
ture by the appli
ation of a transformation. The motivating example presented inse
tion 1.5 is still out of rea
h.
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6 Comparaison with Other Approa
hesWe want to show that some widely used 
omputational models 
an be seen as spe
i�
 instan
esof transformations of some topologi
al 
olle
tions. The level of the dis
ussion is informal.Four Biologi
ally Inspired Computational Models. One of our additional motivationsis the ability to des
ribe generi
ally the basi
 features of four models of 
omputation: Γ andthe CHAM, P systems, L systems and 
ellular automata (CA). They have been developed withvarious goals in mind, e.g. parallel programming for Γ, semanti
 modeling of nondeterministi
pro
esses for the CHAM, 
al
ulability and 
omplexity issues for P systems, formal languagetheory and biologi
al modeling for L systems, parallel distributed model of 
omputation forCA (this list is not exhaustive). We assume that the reader is familiar with the main featuresof these formalisms but a short des
ription of these 
omputational models is given below forthe readers 
onvenien
e.All these 
omputational models rely on a biologi
al or bio
hemi
al metaphor. It is thennatural to require their integration in a uniform framework. Be
ause they �t harmoniously, wegain 
on�den
e that the underlying 
on
epts of topologi
al 
olle
tion may reveal as unifyingand 
overing a broad 
lass of biologi
al DS with a dynami
al stru
ture.The Multi-Agent Paradigm. This se
tion ends by 
omparing the apprao
h of topologi
al
olle
tions with the multi-agent modeling paradigm. We show that the main di�eren
e relieson the entity on whi
h the evolution fun
tion (i.e. transformation in the 
ase of topologi
al
olle
tions and the behavior in the 
ase of multi-agent) is linked.6.1 The topology of Sets and Multisets: the programming language Γ andthe CHAMThe 
omputational model underlying Γ [BM86, BCM87℄ is based on the 
hemi
al rea
tionmetaphor; the data are 
onsidered as a multiset M of mole
ules and the 
omputation is asu

ession of 
hemi
al rea
tions a

ording to parti
ular rules. A rule (R,A) indi
ates whi
hkind of mole
ules 
an rea
t together (a subset m of M that satis�es predi
ates R) and theprodu
t of the rea
tion (the result of applying fun
tion A to m). Several rea
tions may bepossible at the same time. No assumption is made on the order on whi
h the rea
tions o

urs.The only 
onstraint is that if the rea
tion 
ondition R holds for at last one subset of elements,at least one rea
tion o

urs (the 
omputation does not stop until the rea
tion 
ondition doesnot hold for any subset of the multiset).The CHemi
al Abstra
t Ma
hine (CHAM) extends these ideas with a fo
us on the ex-pression of semanti
 of non deterministi
 pro
esses [BB89℄. The CHAM is an elaboration onthe original Γ formalism introdu
ing the notion of subsolution en
losed in a membrane. Itis shown that models of algebrai
 pro
ess 
al
uli 
an be de�ned in a very natural way usinga CHAM: the fa
t that 
on
urren
y (between rule appli
ation) is a primitive built-in notionmakes proof far easier than in the usual pro
ess semanti
s.
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The Topology of Sets. Informally, an element in a set (or in a multiset) is a neighboor ofany other element. Hen
e, the MGS pattern x, y in a rule sele
ts an arbitrary pair in the set,and the pattern x+ sele
ts an arbitrary non-empty subset.Using the te
hni
al notions introdu
ed in se
tion 5, we 
an des
ribe this situation moreformally. A set V is represented by a topologi
al 0-
olle
tion on a one dimensional shapewith verti
es V and only one edge ⊤. The fun
tion ∂1 is de�ned by ∂1⊤ =
∑

V . With thisde�nition, an element of V is 
onne
ted with any other element. The 
hain group des
ribinga set is then parti
ularly simple: Cp = 0 for p 6= 0, K0 = V and C0 = C0(K, Z/2⊙ V ). A set
V 
orresponds to the 
hain ∑

x∈V x.x using the notation des
ribed in page 57.Let c′ be the sub
olle
tion to be repla
ed by d′ into the 
olle
tion c to give a new 
olle
tion
d. The �xed strategy used to build d from d′ and c′′ = ∁cc

′, is simply to set ⊤d = |c′′| ∪ |d′|.This des
ription is only 
ombinatorial and does not admit a geometri
 realization. Indeed,a geometri
 1-
ell is homeomorphi
 to the interval [0, 1] and then admits only two 0-
ells in itsboundary. If one insists to have a geometri
 realization of topologi
al sets, then it is enoughto shift the dimension of the 
ells by one: the elements of V are the many edges of one uniquefa
e.The Topology of Multisets. A multiset M of element e ∈ E 
an be represented by a set
M̂ ⊆ N × E. If e ∈ M with multipli
ity n, then the n elements (1, e), (2, e), ..., (n, e) belongto M̂ . The multiset M is represented as the 1-
olle
tion asso
iated to the set M̂ . With thisen
oding, two arbitrary multiset elements are 
onne
ted, in a

ordan
e with the fa
t thatany submultiset 
an be mat
hed and repla
ed in a Γ rule. Furthermore, the appli
ation ofone Γ rule on a multiset M is a lo
al, boundary preserving, pat
h substitution.6.2 Nesting of Multisets: P systemsP systems [Pau98, Pau00℄ are a new distributed parallel 
omputing model based on the notionof a membrane stru
ture. A membrane stru
ture is a nesting of 
ells represented, e.g, by aVenn diagram without interse
tion and with a unique superset: the skin. Obje
ts are pla
edin the regions de�ned by the membranes and evolve following various transformations: anobje
t 
an evolve into another obje
t, 
an pas through a membrane or dissolve its 
ontainingmembrane. As for Γ, the 
omputation is �nished when no obje
t 
an further evolve.The P Systems Topology. The 
ase of P systems is more interesting, be
ause the topology
an be used to take into a

ount the lo
ality of a 
omputation step. In this approa
h,the region asso
iated to a membrane would be a 2-
ell and the membranes would be 1-
hain; then a P system is viewed as a 2-
olle
tion with a 2-
omplex organization. Note thatmembrane systems are sometimes des
ribed by a sequen
e of well balan
ed parenthesis, whi
hspe
ify only the relative in
lusion of membrane and not their 
onne
tion in one level. The
orresponding topology is then weaker. In the opposite, the organisation enabled by the twodimensional mapping of the membrane in a plane is weaker than the 
ombinaisons enabledby 3D membranes, et
.
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A 
ruder approa
h just asso
iates a multiset M to the region asso
iated with the skin ofa P system. The di�eren
e with Γ is that the elements of M 
an be multiset themselves,asso
iated to the inner membranes. In this approa
h, P systems are viewed as a theory ofnested multiset rewriting.6.3 The Topology of Sequen
es: L systemsL systems are a formalism introdu
ed by A. Lindenmayer in 1968 for simulating the devel-opment of multi
ellular organism. Related to abstra
t automata and formal language, thisformalism has been widely used for the modeling of plants. A L systems 
an be roughly de-s
ribed as a grammar. The produ
tions are applied in parallel in a non deterministi
 manner.0L system are 
ontext-free grammar. D0L system are deterministi
 
ontext-free grammar:given a letter A there is at most one produ
tion that 
an be applied. Parametri
 L systemsdeal with module instead of letters: a module is a letter asso
iated with a list of parameters.The produ
tion rules are extended with 
onditions on the parameters. For example,
A(x, y) : y ≤ 3 −→ A(2x, x + y)is a rule that 
an be applied to the module A(2, 5) to gives the module A(4, 7). This rule
annot be applied on A(7, 1) be
ause the �rst parameter x, does not mat
h the 
ondition.The Topology of Sequen
es. Se
tion 5.12 gives a formalization of the topology of a grid.The model 
an be weakened to gives the topology of a sequen
e.A sequen
e ℓ = <ℓ1, ℓ2, . . . , ℓn> is a 0-
olle
tion whose shape is a 
hain 
omplex of di-mension 1. Let ik be n reals in in
reasing order; the underlying 
omplex K is de�ned by
K0 = {i1, . . . , in} su
h that ij < ij+1

K1 =
{
(i1, i2), (i2, i3), . . . , (in−1, in)

}

∂(k, k′) = k +C k′(this last sum is a formal sum). The shape is C(K, Z/2, δ). Hen
e, ℓ is represented by the
hain ∑
1≤j≤n ℓj.ij (using the notation des
ribed in page 57).An MGS rule c′ => d′ applied to a topologi
al sequen
e c 
orresponds to a substitutionwith result d. The strategy used to glue the new sub
olle
tion d′ and c′′ = ∁cc

′ into the result
d is the following:� if d′ = 0 (that is, the MGS rule 
an
el c′) then Shape(d) = Shape(c′′);� if d′ 6= 0, then δc′ = δd′ (the δ in the left hand side must be taken in the shape of c whilethe δ in the right hand side must be taken in d). This 
ondition, together with d = d′ +

c′′, is enough to spe
ify 
ompletely Shape(d): Shape(d) = Shape(d′)∪ Shape(c′′)∪ |δc′|.In a MGS rule, the sequen
e d′ is 
omputed solely as a fun
tion from the subsequen
e c′.Thus, if d 6= 0, the MGS rule is a pat
h-, boundary and 
oboundary preserving- substitution
omputed by a fun
tion. 67



Topology of Context-Free Sequen
e. However, we 
an propose an alternative. Indeed,for D0L-system, the right hand side of a produ
tion rule is limited to only one element: thereis no intera
tion with the neighborhood and the 
orresponding grammar is 
ontext-free. InMGS terms, it means that all rule have the form:
(x/ . . . ) => . . .This property 
an be enfor
ed using a more pre
ise model, that forbids a dependan
e betweenan element and its neighboor in the substitution pro
ess.A sequen
e v1, ..., vn of n values is then represented by a 1-
olle
tion with shape C(K, Z/2, ∂)de�ned by: K0 = {0, 1, .., n} and K1 = {(0, 1), (1, 2), ..., (n − 1, n)}. We have ∂0x = ∅ and

∂1(i, j) = i + j (where the sum in the right is the group operation of C1). And a 
olle
tion cis a monolayer 0-
hain c = v1.(0, 1) + ... + vn.(n − 1, n).In this formalization, the appli
ation of only one produ
tion x→ f(x) of a D0L system isa lo
al, boundary and 
oboundary preserving, pat
h substitution 
omputed by f . Rigorously,the argument of f is the the 
hain c\Stx, but with our topology, c\Stx = c\x whi
h showthat the new value repla
ing x depends only on x.6.4 The Topology of Arrays: Cellular AutomataCellular automata (CA) have been invented many times under di�erent names: tessalationautomata, 
ell spa
es, iterative arrays, et
. However, a fair fra
tion of the 
omputer resear
hon two-dimensional 
ellular automata has its ultimate origins in the work of J. Von Neumannto provide a more realisti
 model for the behavior of 
omplex system in biology [VN66℄.In a simple 
ase, a 2D 
ellular automaton 
onsists in a grid of 
ells or sites, ea
h with avalue taken in a �nite set V. The values are updated in a sequen
e of dis
rete time steps,a

ording to a de�nite, �xed, rule. Denoting the value of a site at position (i, j) by ai,j,a simple rule gives its new value as a′i,j = ϕ(ai,j ; ak1 , ..., akp
), where ϕ is a fun
tion from

Vp+1 to V whi
h spe
i�es the rule, and where the akj
are the values of the p neighborsof site (i, j). For example, the Von Neumann neighbors of a 
ell (i, j) are the four 
ells

(i− 1, j), (i + 1, j), (i, j − 1) and (i, j + 1).Many variations are possible: organization of the 
ells in a regular latti
e of any dimensionsor even in a general graph, variable neighborhood, various �nite set V. However the main
hara
teristi
s of CA are largely una�e
ted by su
h additional 
ompli
ations.The Topology of Arrays. The topology of arrays has been introdu
ed in se
tion 5.12. Arule of a 
ellular automata is a lo
al, shape preserving, pat
h substitution 
omputed by afun
tion (the evolution fun
tion of an elementary 
ell).6.5 Produ
tion Systems, Rewriting systems and All ThatProdu
tion systems is a term used in arti�
ial intelligen
e to des
ribe systems spe
i�edas a set of produ
tion rules a
ting on a global database under the supervision of a 
ontrol
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system [Nil80℄. Rules are asso
iated with appli
ability 
onditions and the 
ontrol system
hooses the next rule to apply. The termination of the 
omputations is determined by aglobal termination 
ondition.More spe
i�
ally, in the �eld of grammar systems, rewriting systems or formal languagetheory, the idea of many possibly di�erent lo
al derivations relations integrated a

ordingto spe
i�
 strategies, has been extensively studied and applied with di�erent patterns inthe sear
h for new modeling approa
hes of biosystems [Man01, Pau00, Pau98, FMP00℄. Inthese approa
hes, simple 
omponent are spe
i�ed together with their integration: monolithi

omplex systems are redu
ed, by means of 
ooperation and distribution, in terms of simplerparts.MGS parti
ipates of these approa
hes. For instan
e, an MGS program 
an be seen as aprodu
tion system, the termination 
ondition holding when the �xpoint has been rea
hed.The originality of the MGS approa
h lies in the emphasis put on the topologi
al view of therules and on the database, while produ
tion system are often based on logi
al inferen
es orgrammati
al formalisms. The me
hanisms used to des
ribe the integration of the di�erentparts rely heavily on the topologi
al stru
ture of the system, whi
h is a natural tools fordes
ribing su
h 
omplex systems.6.6 A Comparison with the Multi-Agent Modeling ParadigmThe multi-agent paradigm is often advo
ated for the modelization of 
omplex dynami
alsystems. Thus, we want to 
ompare the approa
h of topologi
al 
olle
tions and the multi-agent approa
h. To make the 
omparison more 
on
rete, we turn our attention again on theneurulation example introdu
ed in se
tion 1.5.Let us simplify drasti
ally the des
ription of the neurulation for the sake of its simulation.We 
onsider the neural plate in isolation and we assume that the system evolves by dis
retesteps. Furthermore, we suppose that there is no 
ell 
reation nor destru
tion; the neural plateis modeled as a linear sequen
e of n 
ells in the plane and the left and right extremities ofthis sequen
e are glued together at the end of the neurula stage; see Fig. 28
Figure 28: A simpli�
ation of the neurulation for simulation purposes.The 
hemi
al state sc

i(t + 1) of a 
ell i of the neural plate at time t + 1 depends only ofthe own 
ell a
tivity and of the signals re
eived from the neighboring 
ells at time t. This
an be written:
sc
i (t + 1) = hi(s

c
i (t) ; sc

i1(t), ..., s
c
ik

(t))
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where the 
ells i1, ..., ik are the 
ells in the neighborhood of i and hi the evolution fun
tion ofthe 
ell i. Let V(t; i) denotes the set of neighbors of 
ell i at time t. The fun
tion V dependsof t be
ause there is a 
hange in the neighborhood of the 
ells at the extremities.Now, we have to fa
e the problem of building the representation the state S of the entiresystem from the 
hemi
al state of the 
ells. As a matter of fa
t, the 
hemi
al state of the 
ellsdoes not des
ribe 
ompletely the system. One has to des
ribe also its stru
ture, that is, theorganization of the 
ells. We 
an make three 
hoi
es for the representation of the stru
ture:� avoid the des
ription of the stru
ture,� impli
itly distribute the des
ription of the stru
ture over the state of the 
ells,� expli
itly spe
ify the stru
ture beside the 
hemi
al state.We will see that the �rst 
hoi
e is not an option when dynami
al stru
tures 
ome into theplay. The se
ond approa
h is the approa
h taken to the multi-agent paradigm. The last one
orresponds to the MGS way of thinking.Avoiding the des
ription of the stru
ture. The 
omplete state S of the entire systemis just a set of n 
hemi
al state sc, where n is the number of 
ells in the systems.This approa
h is not satisfa
tory at all be
ause it misses the information related to theneighboring of ea
h 
ell. The fun
tion V is simply ignored. But without this information we
annot �ll h with the right arguments and hen
e, we 
annot 
ompute the traje
tory of theDS. Note however that this approa
h is the standard one when the stru
ture of the DS is stati
:instead of a set, one use any organisation relevant to des
ribe the �xed organisation of the
ells (e.g. a ve
tor). In this 
ase, we write sc
i (t+1) = hi(s

c
1(t), ..., s

c
n(t)) and the fun
tion V is� hard-
oded� in the fun
tional dependen
ies between the arguments of hi. It is be
ause thetime-dependan
e of V that this approa
h fails.The multi-agent approa
h: Impli
it Distributed Representation of the Organiza-tion. The 
omplete state s of a 
ell 
orresponds to its 
hemi
al state sc together with theinformation sn relevant to des
ribe its neighborhood: s = (sc, sn). The 
omplete state S ofthe entire system is then the set of the 
omplete state of the 
ells.This approa
h �ts with the � multi-agent paradigm � for system modeling: ea
h 
ell is anautonomous agent intera
ting with the others. The sn part of ea
h agent state 
orrespondsto a distributed representation of the fun
tion V. There is several possible drawba
ks withsu
h an approa
h:1. Although 
omplete, the des
ription of the organisation of the 
ells is impli
it andspreaded on the sn

i . This does not ease any reasoning on the evolution of the sys-tem nor its implementation.For instan
e, suppose that sn
i represents the position (x, y) of the 
ell i in the plane. The
onne
tion between the 
ells must be re
overed by examining all the 
ells position, in70




ontradi
tion with the lo
al nature of the evolution pro
ess. The global s
an of all the
ell states 
an be avoided if we store the adja
en
y relationship instead of the absoluteposition of ea
h 
ell in the plane. But the problems listed below 
ontinue to hold.2. The information s
attered in the sn
i is redundant. For example, assuming that thespa
e of 
ells is isotropi
, if sn

i indi
ates that 
ell j is a neighbor, then sn
j must indi
atethat i is a neighbor. However, there is no spe
ial way to ensure the 
oheren
y of theredundant informations.3. The distributed representation of the fun
tion V is to loose. If we want to avoid themultipli
ation of 
ell types, a 
ell with two neighbors must be represented in the samemanner as a 
ell with only one neighbor. Then, there is no me
hanism that prevent amisuse of su
h 
ell.4. The behavior hi of the agent i embeeds the bookkeeping needed to 
ompute the infor-mation sn whi
h inhibits its reuse in another 
ontext where the 
hemi
al behavior ofthe 
ell is the same but with another spatial organisation.5. Most of the time, there is no 
hange in the organisation of the 
ells, only the 
hemi
alstate is 
hanging. However, the 
hanges in the organisation are handled at the samelevel as the 
hanges in the own 
ell state.6. Intera
tion, that is the in�uen
e of an entity to the evolution of another, is impli
it.Even if strategies �xing the intera
tion between agents exist, the set of parti
ipants ofan intera
tion is not a �rst 
itizen obje
t of the language.For instan
e, there is no natural obje
t in the basi
 multi-agent paradigm that representa pair of (intera
ting) agents. This kind of entity 
an be modeled by a new kind of
ompound agent, but the managment of the aggregation will be tedious and � by hand �(for instan
e, suppose that the aggregation of two agents in a pair is valid only whenthe two agents are not far one from the other). In other word, there is no support forspatial or logi
al aggregation.MGS: Expli
it Spe
i�
ation of the Organisation. The 
omplete state S of the systemsat time t 
onsists in the set of the sc

· (t) together with the fun
tion V(t, ·). That is, at time
t the sc

· (t) are organized in a 
olle
tion with topology given by V(t, ·). We re
over the MGSmodel. The advantages are the following:1. The des
ription of the organization is expli
it through the topology of the 
olle
tion.And the relationships between the evolution fun
tion and the topology of the 
olle
-tion are expli
itly given in the MGS rules, through the appearan
e of the neighborhoodoperators.It is then more easier to reason on the evolution pro
ess. Stati
 analysis (throughtyping, abstra
t interpretation, stru
tural results on homomorphisms, et
.) is possible.2. The spe
i�
ation of the evolution fun
tion is still lo
al (w.r.t. the topology, usingtransformation rules). 71



Lo
ality is of paramount importan
e. As a matter of fa
t, it enables the appli
ation oftransformation rules on an unknown global stru
ture and the 
onstru
tion/
omputationof a global dynami
al stru
ture with only a stati
 set of �xed lo
al rules of 
hanges.3. It is more easy to spe
ify generi
 h fun
tions that 
an be used with several topology.A rule in MGS spe
i�es an intera
tion between several entities. For example a pattern� x, y � in the left hand side of a rule spe
i�es an intera
tion between two entities.The global stru
ture do not appear in the rule, neither the exa
t representation of thetopologi
al link between x and y. Only the logi
al neighboring relationship between xand y is mentioned. This makes possible the use of the same rule with several topology,
f. se
tion 4.1.4. More generally, the separate spe
i�
ation of the stru
ture and the evolution rules is ane�e
tive way to reuse evolution rules and thus to 
ut down the 
ombinatorial explosionof the behavior × stru
ture spe
i�
ations.

72



7 Con
lusionIn the 
urrent implementation, re
ords, sets, multisets and sequen
es of elements are sup-ported. Elements are of any types, allowing arbitrary nesting. Implementation of arrays is inprogress and group-based data �elds (GBF whi
h generalizes fun
tional arrays, 
f. [GMS96,GM01℄) are planed in a short term. We also plan to study a generi
 implementation oftopologi
al 
olle
tions based on G-maps [Lie91℄.The perspe
tives opened by this preliminary work are numerous. Here are some of them.� The topologi
al formalization of the MGS 
omputation me
hanism must be developped.For instan
e, the formal notions developped here are purely des
riptive, in the sensethat there is no pres
ription of the devi
e used to sele
t a sub
olle
tion. The situationis analogous as the des
ription of the lambda-
al
uli at the point where one has de�nedthe beta-redu
tion as a relation: it remains, to e�e
tively 
ompute a normal form, tode�ne a strategy of redu
tions and to study the intera
tion between this strategy andthe redu
tion, et
.� Furthermore, the 
urrent 
hara
terization of the transformations are rather poor and weare very 
on�dent that they 
an be greatly improved. Our main goal in se
tion 5 was tointrodu
e for a reader with a ba
kground in 
omputer s
ien
e, some of the topologi
alnotions on whi
h a theory of transformations of topologi
al 
olle
tions 
an be build.� Based on the topologi
al ba
kground, it must be possible to design some 
onstru
tionsto let the programmer spe
ify the gluing of the new repla
ement sub
olle
tion into theold one. This is ne
essary if one want to 
ompute a new topology from a old one (the� drasti
 
hanges � evo
ated in page 3).� We 
laim that � by 
hanging the underlying topology, one 
hanges the 
omputationalmodel �. This 
laim must be supported by developping the topologies needed to des
ribethe λ-
al
ulus, �rst-order data�ow, petrinets, et
.� Given some topology, it must be possible to de�nes new ones by standard 
onstru
tions:several produ
ts are possible for instan
e. Produ
ts are very interesting be
ause theyenable the (more or less) orthogonnal des
ription of several (more or less) independantview points of a system.The quotient 
onstru
tions are of parti
ular interest. As a matter of fa
t, these 
on-stru
tions 
an be a basis to des
ribe a system at several s
ale.Nesting is another possible approa
h of this problem and must be studied to enablethe uniform des
ription of the depth of an organization.� The 
omposition of transformations and the building of 
omposed transformations for
omposed topologies must be investigated. Currently, the transformations in MGS areapplied on monoids where a ri
h algebra of fun
tions exists. We musts study if thisalgebra 
an be de�ned in topologi
al terms and then extended to others topologies.
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� Several kinds of restri
tions 
an be put and the transformations, leading to variouskinds of pattern languages and rules. The 
omplexity of mat
hing su
h patterns has tobe investigated.� We also want to develop a type system that 
an handle nested 
olle
tions, along thelines developed in [Ble93℄. At last but not least, we want to known if the topology spa
esbuild by transformations, 
an be 
hara
terized through a non standard type system.� One very important question is the e�
ient implementation of MGS. One approa
h is todevelopp a (non standard) type system that 
an be further used to make the evaluationpro
ess more e�
ient or to guide the 
ompilation. Here are some questions: 
an bethe pattern expressions used to sele
t a sub
olle
tion typed � by 
omplexity of themat
hing �? Can we type a transformation with respe
t to the topology of the inputargument and the output argument? et
.� We must validate the adequation of the MGS 
on
epts to some real appli
ation. Twoof them are parti
ularly motivating: the simulation of the topologi
al 
hanges at theearly development of the embryo (see se
tion 1.5 and 6.6) and the 
ase of the Golgiformation (see se
tion 1.6). These two appli
ations are very 
hallenging and require
omplex topologies going far beyond monolayer �at 
olle
tion. These appli
ations arealso very attra
tive be
ause their potential importan
e for biologists.� One of the motivation behind the MGS proje
t is to develop a domain-spe
i�
 language(DSL) dedi
ated to the simulation of biologi
al systems with a dynami
al stru
ture.DSLs are programming languages for solving problems in a parti
ular domain. To thisend, a DSL provides abstra
tions and notations for the domain at hand. DSLs are usu-ally small, and more de
larative than imperative. Moreover, DSLs are more attra
tivefor programming in the dedi
ated domain than general-purpose languages be
ause ofeasier programming, systemati
 reuse, better produ
tivity, reliability, maintainability,and �exibility. MGS must be validated on these software engineering goals. Problemslike: module systems for reusing simulation parts and 
apitalizing MGS 
ode, dedi
atedsemanti
 framework to validate MGS programs, observation and test theory of MGS pro-grams, et
., are long term resear
h goals.
A
knowledgmentsThe authors would like to thanks the members of the � Simulation and Epigenesis � workgroupat Genopole for stimulating dis
ussions and biologi
al motivations. We are indebt to Fran
oisLetier
e for the development of the 3D graphi
 viewer imoview. We are also very grateful toFran
k Delapla
e and Julien Cohen for their numerous questions, warm en
ouragements andthe 
onstant providing of sweet 
ookies.This resear
h takes pla
e in the Spe
if team of the LaMI umr 8042 CNRS, in Universityof Evry Val d'Essone, and is supported in part by the CNRS, the GDR ALP, the GDR IMPGand the Genopole/Evry. 74



A An MGS GrammarWe give in this se
tion the grammar used in some MGS interpreter (the C++ version at the date of april 2001).We give the grammar in a ya

-like form be
ause it would give some ideas of the 
onstru
tions that 
an beformulated in MGS (see for instan
e the pattern sub-language). Note however that this is only a �rst prototypeand the user 
an expe
t drasti
 
hanges in the near futur. Already now, the fun
tional 
onstru
ts available inthe o
aml version of the MGS interpreter are ri
her thant those available in the C++ version.
// Operator precedence: from the weakest to the strongest binding. See the YACC documentation

%right B_SEMI_COLON // virtual token to indicate a priority less than semi-column
%right SEMI_COLON // ;
%right A_SEMI_COLON // idem but greater
%right EQUAL // =
%right LET // :=
%right DOT_LAMBDA_MARK // virtual token for priority
%right ASSERTION_MARK // !!
%left AS // as
%right MAP FOLD // map, fold
%left EQ NEQ // ==, != or ~=
%right B_COMMA // virtual token for priority
%right COMMA3 // various sort of comma operators
%right COMMA2 //
%right COMMA // the comma ‘‘,’’
%right A_COMMA // virtual token for priority
%left INF2 // <<
%left OR AND // | or ||, & or &&
%left LT LE GT GE // < <= > >=
%left MIN MAX // min max
%left COLUMN // :
%right COLUMN2 // ::
%right APPEND // @
%left PLUS MINUS // +, -
%left TIME DIV MOD // *, /, %
%nonassoc NOT // ~
%right TL // tl
%nonassoc HD EMPTY // hd, empty
%left SIGN_OP // virtual token for the sign of a number
%left LEFT RIGHT // left, right
%nonassoc LBRACKET RBRACKET // {, }
%nonassoc LPAREN RPAREN // (, )
%nonassoc LCROCHET RCROCHET // [, ]
%left DOT // .

// --- SENTENCES -----------------------------------------------------

top_level: /* nothing */ | input ;

input: def
| TERMINATOR
| input TERMINATOR
| input def ;

def: type_declaration TERMINATOR
| command TERMINATOR
| exp TERMINATOR ;

type_declaration: collection | arrow_spec | state ;

command: ... ;
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// --- COLLECTION ---------------------------------------------

collection: COLLECTION user_id EQUAL id ;

// --- STATE -------------------------------------------------------

state: STATE optional_id EQUAL state_body ;
state_body: id | state_body PLUS state_body | state_enumeration ;
state_enumeration: LBRACKET sid_list RBRACKET ;
sid_list: /* nothing */ | field_def | sid_list COMMA field_def ;
field_def: id | NOT id | id EQUAL exp %prec A_COMMA ;

// --- ARROW -------------------------------------------------------

arrow_spec: ARROW_SPEC ident_arrow EQUAL arrow_body ; // definition of arrow names
arrow_body: arrow_sep_begin blist arrow_sep_end ; // and arrow kinds
arrow_sep_begin: ARROW_BEGIN | LBRACKET ; // not presented here
arrow_sep_end: ARROW_END | RBRACKET ;

// --- EXPRESSION --------------------------------------------------------

exp: LPAREN exp RPAREN
| ASSERTION_MARK exp
| exp SEMI_COLON exp // expression sequencing
| exp COMMA exp // Join of collections:
| exp COMMA2 exp // different kind of neighborhood
| exp COMMA3 exp // in the building of a collection
| HD exp // head
| TL exp // tail of a collection
| EMPTY exp // empty predicate
| exp INF2 exp // Scalar (integers, string, bool, ....) and collection Arithmetics
| exp PLUS exp
| exp TIME exp
| exp DIV exp
| exp MOD exp
| exp MINUS exp
| exp LE exp
| exp LT exp
| exp GE exp
| exp GT exp
| exp EQ exp
| exp NEQ exp
| exp AND exp
| exp OR exp
| NOT exp
| exp CONS exp
| exp APPEND exp
| MIN LPAREN exp COMMA exp RPAREN
| MAX LPAREN exp COMMA exp RPAREN
| IF exp THEN exp ELSE exp ENDIF
| exp LPAREN exp_list RPAREN // Function application
| exp LCROCHET integer RCROCHET LPAREN exp_list RPAREN // apply with optional arguments
| exp LCROCHET TIME RCROCHET LPAREN exp_list RPAREN
| exp LCROCHET blist RCROCHET LPAREN exp_list RPAREN
| MAP LCROCHET exp RCROCHET exp // abbreviations for map and fold
| FOLD LCROCHET fold_bin COMMA exp RCROCHET exp
| id LET exp // assigning an imperative local variable
| id EQUAL exp // binding (constantly) a value to a variable
| exp DOT id // accessing the neighborhood
| LEFT id
| RIGHT id
| id
| fun_exp // constants of various type...
| transformation
| record
| integer
| real
| STRING
| UNDEF
| LPAREN RPAREN COLUMN id // empty collections
| id COLUMN LPAREN RPAREN ;

exp_list: /* nothing */ | exp %prec A_COMMA | exp_list COMMA exp %prec A_COMMA ;

record: LBRACKET blist RBRACKET ;
blist: /* nothing */

| id EQUAL exp %prec A_COMMA
| id %prec A_COMMA
| blist COMMA id EQUAL exp %prec A_COMMA
| blist COMMA id %prec A_COMMA ;

fold_bin: fun_exp | MAX | MIN | PLUS | TIME | AND | OR ;

integer: INT | MINUS INT %prec SIGN_OP | PLUS INT %prec SIGN_OP ;
real: REAL | MINUS REAL %prec SIGN_OP | PLUS REAL %prec SIGN_OP ;

// --- FUNCTION -------------------------------------------------------

fun_exp: FUN optional_id optional_arg LPAREN arg_list RPAREN EQUAL exp
| LAMBDA LPAREN arg_list RPAREN DOT exp %prec DOT_LAMBDA_MARK
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| LAMBDA optional_arg arg_list DOT exp %prec DOT_LAMBDA_MARK
| FUN error TSEP
| LAMBDA error TSEP ;

arg_list: /* nothing */ | id | arg_list COMMA id ;
optional_arg: /* nothing */ | LCROCHET blist RCROCHET ;
TSEP: SEMI_COLON | TERMINATOR ;

// --- TRANSFORMATION ---------------------------------------------------

transformation: TRANSFORM transbody
| TRANSFORM user_id optional_arg EQUAL transbody ;

transbody: LBRACKET rule_list OPT_SC RBRACKET ;

rule_list: rule
| transformation // nesting of transformations: not presented here
| rule_list SEMI_COLON rule
| rule_list SEMI_COLON transformation ;

OPT_SC: /* nothing */ | SEMI_COLON ;

// --- IDENTIFIER -----------------------------------------------------

id: ID | QID /* quoted id */ ;
user_id: ID ;
optional_id: /* nothing */ | user_id ;
ident_arrow: IDENT_ARROW ;
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// --- RULES ----------------------------------------------------------

rule: pattern arrow a_exp
| user_id EQUAL pattern arrow a_exp ;

a_exp: exp %prec A_SEMI_COLON
| id COLUMN exp %prec A_SEMI_COLON ; // abstraction rule not presented here

arrow: ARROW // arrows can be abstract or qualified, not presented here
| PLUS_ARROW
| ABSTRACT_ARROW
| PLUS_ABSTRACT_ARROW
| ident_arrow
| arrow_body ;

pattern: user_id // naming
| user_id COLUMN id // guard
| LPAREN pattern RPAREN // precedence
| pattern DIV exp // guard
| pattern TIME // iteration
| pattern PLUS
| pattern AS user_id // naming
| pattern COMMA pattern // neigbhborhood
| filter_state ; // record pattern

filter_state: LBRACKET fid_list RBRACKET ;
fid_list: /* nothing */

| id
| id AS id
| NOT id
| id EQUAL id
| fid_list COMMA id
| fid_list COMMA id AS id
| fid_list COMMA NOT id
| fid_list COMMA id EQUAL id ;
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B Full Code of the Turing+Morphogenesis ExampleWe give here verbatim the 
ode used to produ
e the �gure 13. This 
omplete 
ode uses the output fa
ilities ofMGS to write a �le, 
alled tmp.turing.m whi
h 
ontain theomview orders. The language theomview is used todes
ribe graphi
al 3D s
ene 
omposed of obje
ts with automati
 pla
ement fa
ilities. We give here an extra
tof the produ
ed �le:S
aled{ S
ale <0.1, 0.1, 0.1>Geometry Grid1{ Axis<1,0,0> GridList[Grid1{ Axis <0,0,1> GridList [Box { Size <1, 4, 16> },Box { Size <1, 4, 16> },Box { Size <1, 4, 16> },...Box { Size <1, 4, 16> },Box { Size <1, 4, 16> },Box { Size <1, 4, 16> }℄},Grid1{ Axis <0,0,1> GridList [Box { Size <1, 3.71071, 16> },Box { Size <1, 3.94391, 16> },Box { Size <1, 3.9798, 16> },...Box { Size <1, 3.87611, 16> },Box { Size <1, 3.90443, 16> },Box { Size <1, 3.65924, 16> }℄ },...℄}}The order Box is used to draw a 
ube. The order Grid1 is used to automati
ally align the element of the listGridList, following an axis. In �gure 13, the s
ene is rendered using a framewire mode, but one may 
hoseintera
tively another rendering mode under graphi
al viewer.To understand the 
omposition of the �le tmp.turing.m within the MGS program, one must known that:� "file" << exp write in the �le �le the value of expression exp.� the primitive fun
tion print_
oll takes 6 arguments: print_
oll(file, col, f, s1, s2, s3):� file is an expression that evaluates to the name of the �le where to save the 
olle
tion;� col is the 
olle
tion to be saved;� f is a fun
tion that is applied to ea
h element of the 
olle
tion col: it is the value returned by fthat is written in the �le file;� the value of expression s1 is written at the very beginning;� the value of s2 is written between two elements of the 
olle
tion;� the value of s3 is written at the very end;� The primitive fun
tion 
lose is used to free any resour
es used to write in a �le.� The fun
tion system is used to start a shell 
ommand from the MGS interpreter. imoview is the nameof the theomview viewer.Here is the 
omplete MGS 
ode. It begins with a transformation used to produ
e the initial sequen
e of 
ells,
f. se
tion 4.10.
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trans init ={ x => { a = 3.5 + random(1.0) -0.5, // 4.0,b = 4.0,beta = 12.0 + random(0.05 * 2.0) - 0.05,size = 16 };};;rsp := 1.0/16.0;;diff1 := 0.25;;diff2 := 0.0625;;NbCell := 18;;tore0 := init[1℄(iota(NbCell, ():seq));;The transformation Turing is the 
ore of the 
omputation. It makes use of the auxilliary evolution fun
tionda and db.fun da(a, b, la, ra) = rsp * (16.0 - a * b) + diff1*(la + ra - 2.0*a);;fun db(a, b, beta, lb, rb) = rsp*(a*b - b - beta) + diff2*(lb + rb - 2.0*b);;trans Turing ={ (x / x.b > 8)=> { a = x.a/2, b = x.b/2, beta = x.beta, size = x.size/2},{ a = x.a/2, b = x.b/2, beta = x.beta, size = x.size - x.size/2};(x / (left x) & (right x))+=> { a = x.a + da(x.a, x.b, (left x).a, (right x).a),b = Max(0.0, x.b + db(x.a, x.b, x.beta, (left x).b, (right x).b))};(x / ~(left x))+=> { a = x.a + da(x.a, x.b, 0, (right x).a),b = Max(0.0, x.b + db(x.a, x.b, x.beta, 0, (right x).b))};(x / ~(right x))+=> { a = x.a + da(x.a, x.b, (left x).a, 0),b = Max(0.0, x.b + db(x.a, x.b, x.beta, (left x).b, 0))};};;The transformation Turing is wrapped in several fun
tions used to output the results:fun minimal(x) = if (x <= 0) then 0.1 else x fi;;fun showX(x) = "Box { Size <1, "+ minimal(x.b) + ", "+ minimal(x.size) + "> }";fun showBarre(barre, t, tmax) =( print_
oll("tmp.turing.m",barre, showX,("Grid1{ Axis <0,0,1> GridList [\n"),",\n\t ",
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"℄ }");if (t ~= tmax)then ("tmp.turing.m" << ",\n\n")else ("tmp.turing.m" << "\n\n") fi);fun pre_show() =( "tmp.turing.m" << "S
aled{ S
ale <0.1, 0.1, 0.1>\n"<< " Geometry Grid1{ Axis<1,0,0> GridList[\n\n");;fun post_show(n, 
) =( "tmp.turing.m" << "℄ }}\n";
lose("tmp.turing.m");system("imoview tmp.turing.m"));;fun evol(barre, t, tmax) =( showBarre(barre, t, tmax);if (t < tmax)then evol(Turing[iter=1℄(barre), t+1, tmax)else barre fi);fun evolve(n) = (pre_show(); evol(tore0, 0, n); post_show(n, NbCell));;evolve(180);; // run the evolution of the sequen
e of 
ells for 180 time steps!quit;;
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C Review of Some Notions Related to the Group Stru
tureThe Group Stru
ture. A group (G, +) is a set G with a binary operation + taking two elements of
G into a third denoted by a + b. The operation is required to satisfy the following 
onditions:� Asso
iativity : a + (b + c) = (a + b) + c;� Existen
e of zero: there exists an element 0 ∈ G su
h that a + 0 = 0 + a = a for every a;� Existen
e of negative : for any a there exists an element (−a) su
h that a + (−a) = 0.If g is an element of a group G and n is an integer, then ng denotes the n-fold sum g + ... + g (the element gadded n times) and (−n)g denotes n(−g).If ea
h g ∈ G 
an be written as a �nite sum g =

P
nαgα where the gα belong to a set S, we say that theset S generates G. If the set S is �nite, then we say that G is �nitely generated by S.Group Homomorphisms. Let (G, +G) and (H,+H) be two groups. Then a fun
tion f : G → H is ahomomorphism i� f(a +G b) = f(a) +H f(b) for every a and b. The set of homomorphisms between G and His denoted by Hom(G, H).If f is a bije
tion then we say that f is an isomorphism and that the group G and H are isomorphi
.Let f and g two elements of Hom(G, H). Then we may de�ne the fun
tion (f +Hom(G,H) g) : G → H by

(f +Hom(G,H) g)(x) = f(x) +H g(x). It is easy to 
he
k that (f +Hom(G,H) g) is an homomorphism. It is alsoeasy to 
he
k that Hom(G, H) together with +Hom(G,H) is a group.Dire
t Produ
t of Groups. Of all the methods of 
onstru
ting groups, we mention here the simplest.Let (Gx)x∈X be a family of groups indexed by indi
es in a set X. The set X 
an be �nite or not. The dire
tprodu
t Q
x∈X

Gx is the group H whose underlying set is the 
artesian produ
t of the sets Gx and whosegroup operation is the 
omponent-wise addition.External Dire
t Sum of Groups. If X = {1, 2}, then we write simply G1×G2 instead of Q
i∈{1,2} Gi.If e1 and e2 are the neutral elements of G1 and G2, then the maps g1 7→ (g1, e2) and g2 7→ (e1, g2) areisomorphisms of G1 and G2 with subgroups of G1 × G2. We suppose now that the groups G1 and G2are distinguished. Usually the elements of G1 and G2 are then identi�ed with their images under theseisomorphisms, that is g1 is written for (g1, e2) and g2 is written for (e1, g2). Then G1 and G2 
an be 
onsideredas subgroups of H = G1 × G2.In H we have g1 + g2 = g2 + g1 if gi ∈ Gi, i = 1, 2. Any element h ∈ H 
an be written h = g1 + g2 with

gi ∈ Gi: we say that the subgroups G1 and G2 generates H or that H is the (internal) sum of subgroups G1and G2 of H . The subgroup's interse
tion G1 ∩ G2 is equal to {0} (the subgroups Gi are distinguished), andthen, the sum h = g1 + g2 uniquely de�ne the gi in Gi: we say that the sum is dire
t.This explain why the dire
t produ
t G1×G2 of the distinguished groups G1 and G2 is also written G1⊕G2and 
alled the external dire
t sum of G1 and G2.The notion of external dire
t sum 
an be extended to an arbitrary produ
t, but with a slight 
onstraint.Let H =
Q

x∈X
Gx the dire
t produ
t of the groups Gx. The external dire
t sum of the groups Gx is thesubgroup G of the dire
t produ
t H 
onsisting of all tuples (gx)x∈X su
h that gx = 0Gx

for all but �nitelymany values of x (here 0Gx
is the zero element of Gx). The subgroup G is also 
alled the weak dire
t produ
tor the weak dire
t sum and is written: L

x∈X
Gx.Abelian Groups. If a + b = b + a for every elements a and b, then the group is said abelian or
ommutative. The abelian group G is free if it exists a set of generators S su
h that ea
h g ∈ G 
an be writtenas a unique �nite sum. Then we say that the set of generators S is a basis. For example, the integers withthe usual addition is a free abelian group denoted by Z and the basis is the singleton {1}.If G and H are abelians, then Hom(G, H) is an abelian group too. The dire
t produ
t Q

x∈X
Gx of abeliangroups Gx is abelian. And if all the Gx are free, then their dire
t produ
t is also free. Furthermore, the dire
tprodu
t 
orresponds to the dire
t sum of modules, see below.83



Let a fun
tion h de�ned on the basis S = {gα} of a group G and with value in a group H , i.e. h : S → H .Then, h 
an be extended to an homomorphism h : G → H uniquely de�ned by h(
P

nαgα) =
P

nαh(gα). Thefun
tions h and h 
oin
ide on S. Usually we make no notational di�eren
e between h and its linear extension
h and use h in both 
ase, relying on the 
ontext to make 
lear whi
h of these fun
tion is intended.Ring and Modules. A ring R is an abelian group, written additively, with a multipli
ation operationsatisfying two axioms:� Asso
iativity : r.(s.t) = (r.s).t� Distributivity : r(s + t) = r.s + r.t and (r + s).t = r.t + s.t.If there is an element 1 in R su
h that r.1 = 1.r = r for all r, then 1 is 
alled a unity element in R. A ring is
ommutative if r.s = s.r for all r and s. The only ring we 
onsider is the ring of integers (Z, +, .).An abelian group A has the stru
ture of module over a 
ommutative ring R with unity element 1, ormore simply is a R-module, if there is a binary operation R × A → A, 
alled the s
alar multipli
ation, su
hthat for r, s ∈ R and a, b ∈ A, we have:� r(a + b) = ra + rb� (a + b)r = ra + rb� r(sa) = (r.s)a� 1a = aHomomorphism of Module, Dual of a Module. If A and B are R-modules, a module homo-morphism is a group homomorphism ϕ : A → B su
h that ϕ(ra) = rϕ(a) for r ∈ R and a ∈ A. The set ofmodule homomorphisms is denoted by HomR(A,B).If A is a module over a ring R then the set eA of all homomorphism HomR(A, R) of A to R is a R-module,if we de�ne operations by

(f + g)(a) = f(a) + g(a) for f, g ∈ eA and a ∈ A

(rf)(a) = r f(a) for f ∈ eA, a ∈ A and r ∈ RThis module is 
alled the dual module of A.Dire
t Sum of Modules. Let M and N two modules over a ring R. Consider the module 
onsistingof pairs (m, n) for m ∈ M, n ∈ N , with addition and multipli
ation by elements of R given by
(m, n) + (m′, n′) = (m + m′, n + n′) and r(m, n) = (rm, rn)This module is 
alled the dire
t sum of M and N and is denoted by M ⊕ N . The dire
t sum of any numberof modules 
an be de�ned in the same way. The sum of n 
opies of the module M is denoted by Mn and is
alled the free module of rank n. This is the most dire
t generalization of a n-dimensional ve
tor spa
e.

Z-modules. Any abelian groups 
an be 
onsidered as Z-modules, by de�ning ng as the n-fold sum g +

· · ·+ g. The dire
t sum of these Z-modules 
oin
ides with the dire
t produ
t of the groups and HomZ(A,B) =

Hom(A, B).A one dimensional Z-module is an abelian group denoted by (Z/n, +) where n ∈ N. Formally, this groupis the quotient of Z by the subgroup nZ of the multiples of n. Intuitively, this quotient group has n elementsand ea
h element is a subset of Z. These sets form a partition of Z. These sets are named by one of theirmembers: the element k ∈ Z/n denotes the set {. . . , k−n, k, k+n, k+2n, . . . }. The addition law is 
ompatiblewith the addition on Z: p + q = p + q.The module Z/0 is isomorphi
 to Z and said to be a free module. The other modules Z/n, n 6= 0, are
alled torsion modules.The previous Z-modules are of dimension 1 (they are generated by only one generator). Z-modules ofdimension greater than one are dire
t produ
ts of 1-dimensional Z-modules.84



The Fundamental Theorem of Finitely Generated Abelian Groups. The fundamentaltheorem of abelian groups says that every �nitely generated abelian group G is isomorphi
 to:
G ≃ Z

n × Z/t1 × Z/t2 × . . . × Z/tqwhere ti divides ti+1 (see any standard text on groups; for a 
omputer oriented handling 
f. [Coh93℄). Thistheorem shows that the study of abelian groups splits naturally into, on one hand the study of free Z-modulesof �nite rank (i.e. Z
n), and on the other hand the study of �nite Z-modules.This isomorphism gives in some sense a � 
anoni
al representation � for G. The 
oe�
ient ti of an abeliangroup de�ned by its generators and the relations between them (the �nite presentation of the group) 
an be
omputed using the Smith Normal Form of the group presentation [Smi66℄. The referen
es [KB79, CC82,Ili89, HHR93℄ give a lot of 
onsiderations about the implementation, the 
omplexity of the normalizationalgorithm and its optimizations.There is another su
h 
anoni
al form, derived as follows. If m and n are relatively prime positive integers,then Z/m × Z/n is isomorphi
 to Z/mn. It follows that any �nite 
y
li
 group 
an be written as the produ
tof 
y
li
 groups whose orders are powers of primes. Then

G ≃ Z
n × Z/a1 × Z/a2 × . . . × Z/arwhere ea
h ai is a power of a prime.The Case of the Free Abelian Groups. In the 
ase of a free abelian group, the torsion modules
ollapse to the trivial group and then a �nitely generated abelian group with n generators is simply isomorphi
to Z

n. In other words, an element of a free abelian group with a basis of size n, 
an be represented by a n-upleof integers.
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